
Large Synoptic Survey Telescope
Data Management Applications Design

Mario Jurić∗, R.H. Lupton, T. Axelrod, J.F. Bosch, P.A. Price,

G.P. Dubois-Felsmann, Ž. Ivezić, A.C. Becker, J. Becla,
A.J. Connolly, J. Kantor, K-T Lim, D. Shaw,

for the LSST Data Management

Monday 25th July, 2016, 18:33hrs

∗Please direct comments to <mjuric@lsst.org>.

1

mailto:mjuric@lsst.org

2

Abstract

The LSST Science Requirements Document (the LSST SRD) spec-
ifies a set of data product guidelines, designed to support science goals
envisioned to be enabled by the LSST observing program. Following
these guidlines, the details of these data products have been described
in the LSST Data Products Definition Document (DPDD), and cap-
tured in a formal flow-down from the SRD via the LSST System
Requirements (LSR), Observatory System Specifications (OSS), to the
Data Management System Requirements (DMSR). The LSST Data
Management subsystem’s responsibilities include the design, implemen-
tation, deployment and execution of software pipelines necessary to
generate these data products. This document, in conjunction with the
UML Use Case model (LDM-134), describes the design of the scientific
aspects of those pipelines.

https://docushare.lsstcorp.org/docushare/dsweb/Get/LPM-17
https://docushare.lsstcorp.org/docushare/dsweb/Get/LSE-163
https://docushare.lsstcorp.org/docushare/dsweb/Get/LPM-17
https://docushare.lsstcorp.org/docushare/dsweb/Get/LSE-29
https://docushare.lsstcorp.org/docushare/dsweb/Get/LSE-30
https://docushare.lsstcorp.org/docushare/dsweb/Get/LSE-61
https://docushare.lsstcorp.org/docushare/dsweb/Get/LDM-134

CONTENTS 3

Contents

1 Preface 13

2 Introduction 14
2.1 LSST Data Management System 14
2.2 Data Products . 17
2.3 Data Units . 18
2.4 Science Pipelines Organization 19

3 Alert Production 21
3.1 Single Frame Processing Pipeline (WBS 02C.03.01) 22

3.1.0.1 Input Data: Raw 22
3.1.0.2 Input Data Product: Reference 22
3.1.0.3 Output Data Product: CalExp 22
3.1.0.4 Output Data Product: Source 22
3.1.0.5 Output Data Product: Metadata 22
3.1.0.6 Actions in case of failure: 23
3.1.0.7 Instrumental Signature Removal: 23
3.1.0.8 Pipeline Tasks 24
3.1.0.9 PSF and background determination: 24
3.1.0.10 Pipeline Tasks 24
3.1.0.11 Source measurement: 25
3.1.0.12 Pipeline Tasks 25
3.1.0.13 Photometric and Astrometric calibration: . . 25
3.1.0.14 Pipeline Tasks 25

3.2 Alert Detection (WBS 02C.03.04) 26
3.2.0.15 Input Data: CalExp 26
3.2.0.16 Input Data: Coadd 26
3.2.0.17 Input Data Product: Object 27
3.2.0.18 Input Data Product: DIAObjects 27
3.2.0.19 Input Data Product: SSObjects 27
3.2.0.20 Input Data Product: Reference 27
3.2.0.21 Output Data Product: DIAImage 27
3.2.0.22 Output Data Product: DIASource 27
3.2.0.23 Output Data Product: DIAObject 27
3.2.0.24 Output Data Product: DIAForcedPhotometry 28
3.2.0.25 Template Generation 28

CONTENTS 4

3.2.0.26 Pipeline Tasks 28
3.2.0.27 Image differencing 29
3.2.0.28 Pipeline Tasks 29
3.2.0.29 Source Association 30
3.2.0.30 Pipeline Tasks 30

3.2.1 Prototype Implementation 31
3.3 Alert Generation Pipeline (WBS 02C.03.03) 33

3.3.1 Key Requirements . 33
3.3.1.1 Input Data: Object 33
3.3.1.2 Input Data: CalExp 33
3.3.1.3 Input Data: TemplateCoadd 33
3.3.1.4 Input Data Product: DIAImage 33
3.3.1.5 Output Data Product: VOevents 34
3.3.1.6 Alert generation 34
3.3.1.7 Pipeline Tasks 34
3.3.1.8 Alert Distribution: To community brokers . . 34
3.3.1.9 Pipeline Tasks 34
3.3.1.10 Alert Distribution: Minimal brokers 34
3.3.1.11 Pipeline Tasks 34
3.3.1.12 Forced Photometry on all DIAObjects 35
3.3.1.13 Pipeline Tasks 35

3.3.2 Prototype Implementation 35
3.4 Precovery Photometry Pipeline 36

3.4.1 Key Requirements . 36
3.4.1.1 Precovery of new DIAObjects 36

3.5 Moving Object Pipeline (WBS 02C.03.06) 37
3.5.1 Key Requirements . 37
3.5.2 Baseline Design . 37
3.5.3 Prototype Implementation 38

4 Calibration Products Production 39
4.1 Calibration Products Pipeline (WBS 02C.04.02) 39

4.1.1 Key Requirements . 39
4.1.2 Baseline Design . 39

4.1.2.1 Instrumental sensitivity 39
4.1.2.2 Atmospheric transmissivity 40
4.1.2.3 Detector effects 40
4.1.2.4 Ghost catalog 42

CONTENTS 5

4.1.3 Constituent Use Cases and Diagrams 42
4.1.4 Prototype Implementation 43

4.2 Photometric Calibration Pipeline (WBS 02C.03.07) 44
4.2.1 Key Requirements . 44
4.2.2 Baseline Design . 44
4.2.3 Constituent Use Cases and Diagrams 44
4.2.4 Prototype Implementation 44

4.3 Astrometric Calibration Pipeline (WBS 02C.03.08) 45
4.3.1 Key Requirements . 45
4.3.2 Baseline Design . 45
4.3.3 Constituent Use Cases and Diagrams 45
4.3.4 Prototype Implementation 45

5 Data Release Production 46
5.1 Image Characterization and Calibration 49

5.1.1 BootstrapImChar . 50
5.1.1.1 Input Data Product: Raw 51
5.1.1.2 Input Data Product: Reference 51
5.1.1.3 Output Data Product: Source 52
5.1.1.4 Output Data Product: CalExp 52
5.1.1.5 RunISR . 52
5.1.1.6 SubtractSnaps 53
5.1.1.7 CombineSnaps 53
5.1.1.8 FitWavefront 53
5.1.1.9 SubtractBackground 54
5.1.1.10 DetectSources 54
5.1.1.11 DeblendSources 54
5.1.1.12 MeasureSources 54
5.1.1.13 MatchSemiBlind 55
5.1.1.14 SelectStars 55
5.1.1.15 FitWCS . 55
5.1.1.16 FitPSF . 55
5.1.1.17 WriteDiagnostics 56
5.1.1.18 SubtractStars 56
5.1.1.19 ReinsertStars 56
5.1.1.20 MatchNonBlind 56
5.1.1.21 FitApCorr . 56
5.1.1.22 ApplyApCorr 57

CONTENTS 6

5.1.2 StandardJointCal . 57
5.1.3 RefineImChar . 58
5.1.4 FinalImChar . 59
5.1.5 FinalJointCal . 60

5.2 Coaddition and Difference Imaging 60
5.2.1 WarpAndPsfMatch . 65
5.2.2 BackgroundMatchAndReject 66
5.2.3 WarpTemplates . 68
5.2.4 CoaddTemplates . 69
5.2.5 DiffIm . 69
5.2.6 UpdateMasks . 70
5.2.7 WarpRemaining . 71
5.2.8 CoaddRemaining . 71

5.3 Coadd Processing . 72
5.3.1 DeepDetect . 72
5.3.2 DeepAssociate . 74
5.3.3 DeepDeblend . 75
5.3.4 MeasureCoadds . 76

5.4 Overlap Resolution . 77
5.4.1 ResolvePatchOverlaps 77
5.4.2 ResolveTractOverlaps 78

5.5 Multi-Epoch Object Characterization 79
5.5.1 MultiFit . 80
5.5.2 ForcedPhotometry . 82

5.6 Postprocessing . 82
5.6.1 MOPS . 82
5.6.2 ApplyCalibrations . 83
5.6.3 MakeSelectionMaps . 85
5.6.4 Classification . 85
5.6.5 GatherContributed . 86

6 Services for Data Quality Analysis (SDQA) 87
6.1 Key Requirements . 87
6.2 Key Tasks for Each Tier of QA 88

6.2.1 QA Tier 0 . 88
6.2.1.1 Continuous Integration Services 88
6.2.1.2 Test Execution Harness 89
6.2.1.3 Verification Metrics Code 89

CONTENTS 7

6.2.1.4 Computational Metrics 90
6.2.1.5 Curated Datasets 90
6.2.1.6 SQUASH - Science Quality Analysis Harness 91

6.2.2 QA Tier 1 . 92
6.2.2.1 Alert QA . 93
6.2.2.2 Validation Metrics Performance 93
6.2.2.3 Dome / Operator Displays 94
6.2.2.4 Telescope Systems 94
6.2.2.5 Camera Calibration 94
6.2.2.6 Engineering and Commissioning 94
6.2.2.7 Data Release Production 95

6.2.3 QA Tier 2 . 95
6.2.3.1 DRP-specific dataset 95
6.2.3.2 Interfaces to Workflow and Provenance Sys-

tem(s) . 96
6.2.3.3 Output Interface to Science Pipelines 96
6.2.3.4 Comparison tools for overlap areas due to

satellite processing 96
6.2.3.5 Metrics/products for science users to under-

stand quality of science data products (depth
mask/selection function, etc.) 97

6.2.3.6 Characterization report for Data Release . . . 97
6.2.4 QA Tier 3 . 97
6.2.5 Interactive Visualization 97
6.2.6 Who validates the validator? 98

6.2.6.1 Intrinsic design features 98
6.2.6.2 Known Truth 99
6.2.6.3 Reference Truth 99

7 Science User Interface and Toolkit 100
7.1 Science Pipeline Toolkit (WBS 02C.01.02.03) 100

7.1.1 Key Requirements . 100
7.1.2 Baseline Design . 100
7.1.3 Constituent Use Cases and Diagrams 100
7.1.4 Prototype Implementation 100

CONTENTS 8

8 Algorithmic Components 101
8.1 Reference Catalog Construction: Princeton 101
8.2 Instrument Signature Removal: UW 101

8.2.1 AP: UW . 101
8.2.2 DRP: Princeton . 102

8.3 Artifact Detection . 102
8.3.1 Single-Exposure Morphology: UW 102

8.3.1.1 Cosmic Ray Identification 102
8.3.1.2 Optical ghosts 103

8.3.2 Single-Exposure Aggregation: UW 104
8.3.2.1 Linear feature detection and removal 104

8.3.3 Snap Subtraction: UW 105
8.3.3.1 Improvements by using multiple snaps 105

8.3.4 Warped Image Comparison: Princeton? 106
8.4 Artifact Interpolation: Princeton? 106
8.5 Source Detection: Princeton 106
8.6 Deblending . 106

8.6.1 Single Frame Deblending: Princeton 107
8.6.2 Multi-Coadd Deblending: Princeton 107

8.7 Measurement: Princeton . 107
8.7.1 Drivers: Princeton . 107

8.7.1.1 Single Frame Measurement: 107
8.7.1.2 Multi-Coadd Measurement: 109
8.7.1.3 Difference Image Measurement: 109
8.7.1.4 Multi-Epoch Measurement: 109
8.7.1.5 Forced Measurement: 110

8.7.2 Algorithms: Princeton 110
8.7.2.1 Centroids . 110
8.7.2.2 Pixel Flag Aggregation 111
8.7.2.3 Second-Moment Shapes 111
8.7.2.4 Aperture Photometry 111
8.7.2.5 Static Point Source Photometry 112
8.7.2.6 Kron Photometry 112
8.7.2.7 Petrosian Photometry 112
8.7.2.8 Galaxy Models 112
8.7.2.9 Moving Point Source Models 113
8.7.2.10 Trailed Point Source Models 113
8.7.2.11 Dipole Models 113

CONTENTS 9

8.7.2.12 Spuriousness 114
8.7.3 Blended Measurement: UW 115

8.7.3.1 Deblend Template Projection 115
8.7.3.2 Neighbor Noise Replacement 115
8.7.3.3 Simultaneous Fitting 115
8.7.3.4 Hybrid Models 115

8.8 Background Estimation: UW? 115
8.9 Matched Background Estimation: Princeton? 116
8.10 Build Background Reference 116

8.10.1 Patch Level: Princeton 116
8.10.2 Tract Level: Princeton 117

8.11 PSF Estimation – Not sure how to divide this up. 118
8.11.1 Single CCD PSF Estimation: UW 118

8.12 Wavefront Sensor PSF Estimation: UW 119
8.12.1 Full Visit PSF Estimation: Princeton 119

8.13 Aperture Correction: Princeton 120
8.14 Astrometric Fitting . 120

8.14.1 Single CCD: UW . 120
8.14.2 Single Visit: UW . 121
8.14.3 Joint Multi-Visit: UW 121

8.15 Photometric Fitting . 121
8.15.1 Single CCD (for AP): UW 121
8.15.2 Single Visit: UW . 121
8.15.3 Joint Multi-Visit: UW? 122

8.16 Retrieve Diffim Template for a Visit: UW 123
8.17 PSF Matching . 123

8.17.1 Image Subtraction: UW 124
8.17.2 PSF Homogenization for Coaddition: Princeton 126

8.18 Image Warping . 126
8.18.1 Oversampled Images: UW 126
8.18.2 Undersampled Images: UW? 127
8.18.3 Irregularly-Sampled Images: UW? 127

8.19 Image Coaddition: Princeton 127
8.20 DCR-Corrected Template Generation: UW 128

8.20.1 Refraction from the atmosphere 128
8.20.2 Generating a DCR corrected template 129

8.21 Image Decorrelation . 130
8.21.1 Difference Image Decorrelation: UW 130

CONTENTS 10

8.21.2 Coadd Decorrelation: Princeton 131
8.22 Star/Galaxy Classification: Princeton? 131

8.22.1 Single Frame S/G . 131
8.22.2 Multi-Source S/G . 132
8.22.3 Object Classification 132

8.23 Variability Characterization: UW 132
8.23.1 Characterization of periodic variability 132
8.23.2 Characterization of aperiodic variability 133

8.24 Proper Motion and Parallax from DIASources: UW 135
8.25 Association and Matching . 136

8.25.1 Single CCD to Reference Catalog, Semi-Blind: UW . . 136
8.25.2 Single Visit to Reference Catalog, Semi-Blind: UW . . 138
8.25.3 Multiple Visits to Reference Catalog: Princeton 138
8.25.4 DIAObject Generation: UW 138
8.25.5 Object Generation: Princeton 139
8.25.6 Blended Overlap Resolution: Princeton 140

8.26 Raw Measurement Calibration: Princeton 140
8.27 Ephemeris Calculation: UW 140
8.28 Make Tracklets: UW . 141
8.29 Attribution and precovery: UW 142
8.30 Orbit Fitting: UW . 142
8.31 Orbit Merging: UW . 143

9 Software Primitives 144
9.1 Cartesian Geometry . 144

9.1.1 Points: UW . 144
9.1.2 Arrays of Points: UW 145
9.1.3 Boxes: UW . 145
9.1.4 Polygons: UW . 145
9.1.5 Ellipses: Princeton . 146

9.2 Spherical Geometry . 146
9.2.1 Points: UW . 147
9.2.2 Arrays of Points: UW 147
9.2.3 Boxes: UW . 147
9.2.4 Polygons: UW . 147
9.2.5 Ellipses: Princeton . 148

9.3 Images . 148
9.3.1 Simple Images: Princeton 148

CONTENTS 11

9.3.2 Masks: Princeton . 148
9.3.3 MaskedImages: Princeton 149
9.3.4 Exposure: Princeton? 149

9.4 Multi-Type Associative Containers: UW? 150
9.5 Tables: Princeton . 151

9.5.1 Source . 151
9.5.2 Object . 151
9.5.3 Exposure . 151
9.5.4 AmpInfo: UW . 151
9.5.5 Reference . 152
9.5.6 Joins . 152
9.5.7 Queries . 152
9.5.8 N-Way Matching . 153

9.6 Footprints: Princeton . 153
9.6.1 PixelRegions . 153
9.6.2 Functors . 154
9.6.3 Peaks . 154
9.6.4 FootprintSets . 154
9.6.5 HeavyFootprints . 154
9.6.6 Thresholding . 155

9.7 Basic Statistics: Princeton . 155
9.8 Chromaticity Utilities: UW? 155

9.8.1 Filters . 155
9.8.2 SEDs . 156
9.8.3 Color Terms . 156

9.9 PhotoCalib: Princeton? . 156
9.10 Convolution Kernels: Princeton 157
9.11 Coordinate Transformations: UW 157
9.12 Numerical Integration: Princeton 158
9.13 Random Number Generation: Princeton 158
9.14 Interpolation and Approximation of 2-D Fields: UW? 158
9.15 Common Functions and Source Profiles: UW 158
9.16 Camera Descriptions: UW . 159
9.17 Numerical Optimization: Princeton 159
9.18 Monte Carlo Sampling: Princeton 159
9.19 Point-Spread Functions: UW 159
9.20 warping: Princeton . 160
9.21 Fourier Transforms: UW . 160

CONTENTS 12

9.22 Tree Structures: UW . 160
9.23 Tools: Both . 160

10 Glossary 162

1 PREFACE 13

1 Preface

The purpose of this document is to describe the design of pipelines belonging
to the Applications Layer of the Large Synoptic Survey Telescope (LSST)
Data Management system. These include most of the core astronomical data
processing software that LSST employs.

The intended audience of this document are LSST software architects and
developers. It presents the baseline architecture and algorithmic selections
for core DM pipelines. The document assumes the reader/developer has the
required knowledge of astronomical image processing algorithms and solid
understanding of the state of the art of the field, understanding of the LSST
Project goals and concepts, and has read the LSST Science Requirements
(SRD) as well as the LSST Data Products Definition Document (DPDD).

This document should be read in conjunction with the LSST DM Applica-
tions Use Case Model (LDM-134). They are intended to be complementary,
with the Use Case model capturing the detailed (inter)connections between
individual pipeline components, and this document capturing the overall
goals, pipeline architecture, and algorithmic choices.

Though under strict change control1, this is a living document. Firstly,
as a consequence of the “rolling wave” LSST software development model, the
designs presented in this document will be refined and made more detailed as
particular pipeline functionality is about to be implemented. Secondly, the
LSST will undergo a period of construction and commissioning lasting no less
than seven years, followed by a decade of survey operations. To ensure their
continued scientific adequacy, the overall designs and plans for LSST data
processing pipelines will be periodically reviewed and updated.

1LSST Docushare handle for this document is LDM-151.

https://docushare.lsstcorp.org/docushare/dsweb/Get/LPM-17
https://docushare.lsstcorp.org/docushare/dsweb/Get/LSE-163
https://docushare.lsstcorp.org/docushare/dsweb/Get/LDM-134

2 INTRODUCTION 14

2 Introduction

2.1 LSST Data Management System

To carry out this mission the Data Management System (DMS) performs the
following major functions:

• Processes the incoming stream of images generated by the camera
system during observing to produce transient alerts and to archive the
raw images.

• Roughly once per year, creates and archives a Data Release (“DR”),
which is a static self-consistent collection of data products generated
from all survey data taken from the date of survey initiation to the cutoff
date for the Data Release. The data products (described in detail in
the DPDD), include measurements of the properties (shapes, positions,
fluxes, motions, etc.) of all detected objects, including those below the
single visit sensitivity limit, astrometric and photometric calibration
of the full survey object catalog, and limited classification of objects
based on both their of the full survey area are produced as well.

• Periodically creates new calibration data products, such as bias frames
and flat fields, that will be used by the other processing functions, as
necessary to enable the creation of the data products above.

• Makes all LSST data available through interfaces that utilize, to the
maximum possible extent, community-based standards such as those
being developed by the Virtual Observatory (“VO”), and facilitates
user data analysis and the production of user-defined data products at
Data Access Centers (“DAC”) and at external sites.

The overall architecture of the DMS is discussed in more detail in the Data
Management System Design (DMSD) document. The overall architecture of
the DMS is shown in Figure 1.

This document discusses the role of the Applications layer in the first three
functions listed above (the functions involving science pipelines). The fourth
is discussed separately in the SUI Conceptual Design Document (SUID).

https://docushare.lsstcorp.org/docushare/dsweb/Get/LSE-163
https://docushare.lsstcorp.org/docushare/dsweb/Get/LDM-148
https://docushare.lsstcorp.org/docushare/dsweb/Get/LDM-131

2 INTRODUCTION 15

0
2

C
.0

6
.0

2
D

at
a

A
cc

es
s

Se
rv

ic
es

0
2

C
.0

7
.0

1
, 0

2
C

.0
6

.0
3

P
ro

ce
ss

in
g

M
id

d
le

w
ar

e

0
2

C
.0

7
.0

2
In

fr
as

tr
u

ct
u

re
 S

er
vi

ce
s

(S
ys

te
m

 A
d

m
in

is
tr

at
io

n
, O

p
e

ra
ti

o
n

s,
 S

ec
u

ri
ty

)

0
2

C
.0

8
.0

3
Lo

n
g-

H
au

l
C

o
m

m
u

n
ic

at
io

n
s

P
h

ys
ic

al
 P

la
n

t
(i

n
cl

u
d

e
d

 in
 a

b
o

ve
)

0
2

C
.0

7
.0

4
.0

2
B

as
e

Si
te

A
p

p
lic

at
io

n
 L

ay
e

r
(L

D
M

-1
5

1
)

•
Sc

ie
n

ti
fi

c
La

ye
r

•
P

ip
el

in
es

 c
o

n
st

ru
ct

ed
 f

ro
m

 r
eu

sa
b

le

A
lg

o
ri

th
m

ic
 C

o
m

p
o

n
en

ts
•

D
at

a
P

ro
d

u
ct

s
re

p
re

se
n

te
d

 b
y

Sh
ar

ed

So
ft

w
ar

e
P

ri
m

it
iv

es
•

O
b

je
ct

-o
ri

en
te

d
, p

yt
h

o
n

, C
+

+
C

u
st

o
m

So

ft
w

ar
e

M
id

d
le

w
ar

e
 L

ay
e

r
(L

D
M

-1
5

2
)

•
Po

rt
ab

ili
ty

 t
o

 c
lu

st
er

s,
 g

ri
d

, o
th

er
•

P
ro

vi
d

e
st

an
d

ar
d

 s
er

vi
ce

s
so

 a
p

p
lic

at
io

n
s

b
eh

av
e

co
n

si
st

en
tl

y
(e

.g
. p

ro
ve

n
an

ce
)

•
P

re
se

rv
e

p
er

fo
rm

an
ce

 (
<1

%
 o

ve
rh

ea
d

)
•

C
u

st
o

m
 S

o
ft

w
ar

e
o

n
 t

o
p

 o
f

O
p

en
 S

o
u

rc
e,

 O
ff

-
th

e-
sh

el
f

So
ft

w
ar

e

In
fr

as
tr

u
ct

u
re

 L
ay

e
r

(L
D

M
-1

2
9

)
•

D
is

tr
ib

u
te

d
 P

la
tf

o
rm

•
D

if
fe

re
n

t
si

te
s

sp
ec

ia
liz

ed
 f

o
r

re
al

-t
im

e
al

er
ti

n
g

vs
p

et
a-

sc
al

e
d

at
a

ac
ce

ss
•

O
ff

-t
h

e
-s

h
el

f,
 C

o
m

m
er

ci
al

 H
ar

d
w

ar
e

&
So

ft
w

ar
e,

 C
u

st
o

m
 In

te
gr

at
io

n

0
2

C
.0

6
.0

1
Sc

ie
n

ce
 D

at
a

A
rc

h
iv

e
(I

m
ag

e
s,

 A
le

rt
s,

 C
at

al
o

gs
)

0
2

C
.0

3
, 0

2
C

.0
4

A
le

rt
, C

al
ib

ra
ti

o
n

, D
at

a
R

e
le

as
e

P

ro
d

u
ct

io
n

s

0
2

C
.0

3
.0

5
, 0

2
C

.0
4

.0
1

Sh
ar

ed
 S

o
ft

w
ar

e
P

ri
m

it
iv

e
s

0
2

C
.0

5
Sc

ie
n

ce
 U

se
r

In
te

rf
ac

e
an

d
 A

n
al

ys
is

 T
o

o
ls

0
2

C
.0

7
.0

4
.0

1
A

rc
h

iv
e

Si
te

D
a

ta
 M

a
n

a
g

em
en

t
Sy

st
em

 D
es

ig
n

 L
D

M
-1

4
8

0
2

C
.0

1
.0

2
SD

Q
A

 S
ys

te
m

A
lg

o
ri

th
m

ic
 C

o
m

p
o

n
e

n
ts

Figure 1: Architecture of the Data Management System

2 INTRODUCTION 16

Figure 2: Organization of LSST Data Products

2 INTRODUCTION 17

2.2 Data Products

The LSST data products are organized into three groups, based on their
intended use and/or origin. The full description is provided in the Data
Products Definition Document (DPDD); we summarize the key properties
here to provide the necessary context for the discussion to follow.

• Level 1 products are intended to support timely detection and follow-
up of time-domain events (variable and transient sources). They are
generated by near-real-time processing the stream of data from the
camera system during normal observing. Level 1 products are therefore
continuously generated and / or updated every observing night. This
process is of necessity highly automated, and must proceed with abso-
lutely minimal human interaction. In addition to science data products,
a number of related Level 1 “SDQA”2 data products are generated
to assess quality and to provide feedback to the Observatory Control
System (OCS).

• Level 2 products are generated as part of a Data Release, generally
performed yearly, with an additional data release for the first 6 months
of survey data. Level 2 includes data products for which extensive
computation is required, often because they combine information from
many exposures. Although the steps that generate Level 2 products
will be automated, significant human interaction may be required at
key points to ensure the quality of the data.

• Level 3 products are generated on any computing resources anywhere
and then stored in an LSST Data Access Center. Often, but not
necessarily, they will be generated by users of LSST using LSST software
and/or hardware. LSST DM is required to facilitate the creation of
Level 3 data products by providing suitable APIs, software components,
and computing infrastructure, but will not by itself create any Level 3
data products. Once created, Level 3 data products may be associated
with Level 1 and Level 2 data products through database federation.
Where appropriate, the LSST Project, with the agreement of the Level
3 creators, may incorporate user-contributed Level 3 data product
pipelines into the DMS production flow, thereby promoting them to
Level 1 or 2.

2Science Data Quality Analysis

https://docushare.lsstcorp.org/docushare/dsweb/Get/LSE-163

2 INTRODUCTION 18

The organization of LSST Data Products is shown in Figure 2.
Level 1 and Level 2 data products that have passed quality control tests

will be accessible to the public without restriction. Additionally, the source
code used to generate them will be made available, and LSST will provide
support for builds on selected platforms.

The pipelines used to produce these public data products will also produce
many intermediate data products that may not be made publically available
(generally because they are fully superseded in quality by a public data
product). Intermediate products may be important for QA, however, and
their specification is an important part of describing the pipelines themselves.

2.3 Data Units

In order to describe the components of our processing pipelines, we first need
standard nomenclature for the units of data the pipeline will process.

The smallest data units are those corresponding to individual astrophysical
entities. In keeping with LSST conventions, we use “object” to refer to the
astrophysical entity itself (which typically implies aggregation of some sort
over all exposures), and “source” to refer to the realization of an object on
a particular exposure. In the case of blending, of course, these are just our
best attempts to define distinct astrophysical objects, and hence it is also
useful to define terms that represent this process. We use “family” to refer to
group of blended objects (or, more rarely, sources), and “child” to refer to a
particular deblended object within a family. A “parent” is also created for
each family, representing the alternate hypothesis that the blend is actually
a single object. Blends may be hierarchical; a child at one level may be a
parent at the level below.

LSST observations are taken as a pair of 15-second “snaps”; together
these constitute a “visit”. Because snaps are typically combined early in the
processing (and some special programs and survey modes may take only a
single snap), visit is much more frequently used as a unit for processing and
data products. The image data for to a visit is a set of 189 “CCD” or “sensor”
images. CCD-level data from the camera is further data divided across the
16 amplifiers within a CCD, but these are also combined at an early stage,
and the 3×3 CCD “rafts” that play an important role in the hardware design
are relatively unimportant for the pipeline. This leaves visit and CCD the
main identifiers of most exposure-level data products and pipelines.

Our convention for defining regions on the sky is deliberately vague; we

2 INTRODUCTION 19

hope to build a codebase capable of working with virtually any pixelization or
projection scheme (though different schemes may have different performance
or storage implications). Our approach involves two region concepts: “tracts”
and “patches”. A tract is a large region with a single Cartesian coordinate
system; we assume it is larger than the LSST field of view, but its maximum
size is essentially set by the point at which distortion in the projection
becomes significant enough to affect the processing (by e.g. breaking the
assumption that the PSF is well-sampled on the pixel grid). Tracts are
divided into patches, all of which share the tract coordinate system. Most
image processing is perfomed at the patch level, and hence patch sizes are
chosen largely to ensure that patch-level data products and processing fit in
memory. Both tracts and patches are defined such that each region overlaps
with its neighbors, and these overlap regions must be large enough that any
individual astronomical object is wholly contained in at least one tract and
patch. In a patch overlap region, we expect pixel values to be numerically
equivalent (i.e. equal up to floating point round-off errors) on both sides; in
tract overlaps, this is impossible, but we expect the results to be scientifically
consistent. Selecting larger tracts and patches thus reduces the overall fraction
of the area that falls in overlap regions and must be processed multiple times,
while increasing the computational load for processing individual tracts and
patches.

2.4 Science Pipelines Organization

As shown in Figure 1, the Applications Layer is itself split into three levels. In
sections 3, 4, and 5, we describe the Alert Production, Calibration Products
Production, and Data Release Production (respectively), breaking them down
into pipelines. In this document, a pipeline is a high-level combination of
algorithms that is intrinsically tied to its role in the production in which it is
run. For instance, while both Alert Production and Data Release Production
will include a pipeline for single-visit processing, these two pipelines are
distinct, because the details of their design depend very much on the context
in which they are run. Section 6 describes the Science Data Quality Analysis
System, a collection of pipelines and mini-productions designed to assess
and continuously validate the quality of both the data and the processing
system. The SDQA System is not a single production; its components are
either directly integrated into other productions or part of a set of multiple
mini-productions run on different cadences.

2 INTRODUCTION 20

Pipelines are largely composed of Algorithmic Components: mid-level
algorithmic code that we expect to reuse (possibly with different configuration)
across different productions. These components constitute the bulk of the new
code and algorithms to be developed for Alert Production and Data Release
Production, and are discussed in section 8. Most algorithmic components
are applicable to any sort of astronomical imaging data, but some will be
customized for LSST.

The lowest level in the Applications Layer is made up of our shared
software primitives: libraries that provide important data structures and
low-level algorithms, such as images, tables, coordinate transformations, and
nonlinear optimizers. Much (but not all) of this content is astronomy-related,
but essentially none of it is specific to LSST, and hence we can and will make
use of third-party libraries whenever possible. These primitives also play an
important role in connecting the Science User Interface Toolkit and Level
3 processing environment with Level 1 and Level 2 data products, as they
constitute the programmatic representation of those data products. Shared
software primitives are discussed in section 9.

3 ALERT PRODUCTION 21

Name Availability Description

DIASource Stored Measurements from difference imagine anal-
ysis of individual exposures.

DIAObject Stored Aggregate quantities computing by associ-
ating spatially colocated DIASources.

DIAForcedSource Stored Flux measurements on each difference image
at the position of every DIAObject.

SSObject Stored Solar system objects derived by associating
DIASources and inferring their orbits.

CalExp Stored Calibrated exposure images for each
CCD/visit (sum of two snaps).

DiffExp Stored Difference between CalExp and PSF-
matched template coadd.

Table 1: Table of derived and persisted data products produced during a
Alert Production. A description of these data products can be found in the
Data Products Definition Document (LSE-163).

3 Alert Production

Alert Production is run each night to product catalogs and images for sources
that have varied or moved relative to a previous observation. The data
products produced by Alert production are given in table .

Alert Production is designed as five separate components: single frame
processing, alert detection, alert generation, precovery photometry, and a
moving objects pipeline. The first four of these components run as a linear
pass through of the data. The moving objects pipeline is run independently of
the rest of the alert production. The flow of information through this system
is shown in figure 3.

In this document we do not address the question of estimating the selection
function for the alert generation through the injection of simulated sources.
Such a process could be undertaken in a parallel processing string that
starts from the generation of the CalExp images though, given the available
computational resources, this would likely only be able to sample the selection
function over a subset

3 ALERT PRODUCTION 22

3.1 Single Frame Processing Pipeline (WBS 02C.03.01)

Single Frame Processing (SFM) Pipeline is responsible for reducing raw
or camera corrected image data to calibrated exposures, the detection and
measurement of Sources (using the components functionally a part of the
Object Characterization Pipeline), the characterization of the point-spread-
function (PSF), and the generation of an astrometric solution for an image.

Single Frame Processing pipeline will be implemented as a flexible frame-
work where new processing steps can be added without modifying the stack
code. It should be possible for this pipeline or a subset of this pipeline to be
run at the telescope facility during commissioning and operations.

3.1.0.1 Input Data: Raw Amplifier images that the camera has cor-
rected for crosstalk, overscan, linearity. All images from a visit should be
available to the task (including snaps). An approximate WCS is assumed to
be available as metadata

3.1.0.2 Input Data Product: Reference A full-sky reference catalog
of stars derived either from an external survey (e.g. Gaia) or from the Data
Release Processing.

Flatfield calibration images for all passbands and all CCDs appropriate
for the time at which the observations were undertaken

List of the positions and extents of sensor defects for all CCDs within the
focal plane

Metadata for all CCDs including electronic parameters (saturation limits,
readnoise, electronic footprint)

3.1.0.3 Output Data Product: CalExp A calibrated exposure (Cal-
Exp). CalExp is an Exposure object. The CalExp will contain a PSF, WCS,
PhotoCalib and Background. The pixel data will include the image, mask,
and variance.

3.1.0.4 Output Data Product: Source A catalog of Sources with
measured features (as described in ??).

3.1.0.5 Output Data Product: Metadata A parameterization of the
PSF for the visit, the WCS for the visit, and associated metadata (e.g.

3 ALERT PRODUCTION 23

photometric depth) must be made available to the telescope Observatory
Control System (OCS). It is expected that these data will be persisted within
a database that will be queried by the OCS.

SFM pipeline functions include:

• Assembly of per-amplifier images to an image of the entire CCD;

• Instrumental Signature Removal;

• Cosmic ray rejection and snap combining;

• Per-CCD determination of zeropoint and aperture corrections;

• Per-CCD PSF determination;

• Per-CCD WCS determination and astrometric registration of images;

• Per-CCD sky background determination;

• Source detection and measurement on single frame images

• Generation of metadata required by the OCS

Calibrated exposure produced by the SFM pipeline must possess all
information necessary for measurement of source properties by single-epoch
Object Characterization algorithms.

3.1.0.6 Actions in case of failure: In the case camera data are not
available due to a network outage that is longer than the data buffer at the
summit the single frame processing will work on raw images (i.e. without the
camera pixel corrections) and be run in a batch mode.

3.1.0.7 Instrumental Signature Removal: Instrumental Signature
Removal characterizes, corrects, interpolates and flags the camera (or raw)
images to generate a flat-fielded and corrected exposure.

3 ALERT PRODUCTION 24

3.1.0.8 Pipeline Tasks

• Mask CCD defects based on the and saturation

• Assembly

• Full frame corrections: Dark, Flats (includes fringing)

• Pixel level corrections: Brighter fatter, static pixel size effects

• Interpolation of defects and saturation

• CR rejection

• Generate snap difference

• Snap combination

3.1.0.9 PSF and background determination:
Given exposures that have been processed through the Instrument Signa-

ture Removal, sources must be detected that will be used to determine the
WCS and photometric calibration of the images. Detection and measurement
of the properties of these calibration Sources requires knowlege of the PSF
and background for the image which in turn requires knowledge of the sources
on the image. An iterative procedure is, therefore, adopted to generate the
Source catalog.

3.1.0.10 Pipeline Tasks The procedure for PSF and background estima-
tion and the associated algorithmic components. Convergence criteria for the
procedure is not defined but the default procedure assumes three iterations.

• Background estimation

• Source detection to the 5σ limit of

• Selection of PSF candidate stars based on a signal-to-noise threshold
(default 50 σ) and isolated sources

• Single CCD PSF determination given the selected bright sources

3 ALERT PRODUCTION 25

3.1.0.11 Source measurement:
For the Source catalog generated in 3.1.0.9 measure the source properties

using a subset of features described in 8.7. Source measurement if for all
sources within the Source catalog and not just the bright subset used to
calibrate the PSF.

3.1.0.12 Pipeline Tasks We anticipate using the following plugin algo-
rithms for 8.7

• Centroids

• Pixel Flag Aggregation

• Aperture Photometry (but only for one or two radii)

• PSF Photometry

• Static Point Source Models

• Aperture correction for detected sources

3.1.0.13 Photometric and Astrometric calibration: Photometric
and astrometric calibration entails a “semi-blind” cross match of a reference
catalog (derived either from the DRP Objects or from an external catalog),
the generation of a WCS (on the scale of a CCD or visit), and the generation
of a photometric zeropoint (on the scale of a CCD).

3.1.0.14 Pipeline Tasks Photometric and astrometric calibration per-
formed at the scale of a single sensor (extended to the scale of a visit depending
on required fidelity)

• CCD level source association between the DRP reference catalog and
Sources from the 3.1.0.11

• Generation of a photometric solution at the level of a single CCD

• Decomposition of the astrometric components (e.g. optical distortions,
sensor tree-rings) for a single CCD and generation of an astrometric fit
at the level of a single CCD

3 ALERT PRODUCTION 26

• Persistence of the astrometric, PSF, and photometric solutions so that
the OCS can incorporate it into their telemetry

Given the number of stars available on a CCD or the complexity of the
astrometric solutions for the LSST it may be necessary that the astrometric
and photometric solutions must be performed at the level of a visit and not a
CCD. For these cases the operations will be single visit matching, single visit
photometric solutions, single visit astrometric fits.

Astrometric and photometric performance within crowded fields will re-
quire that the order of the WCS should depend on the number of calibration
Sources that are available.

3.2 Alert Detection (WBS 02C.03.04)

Alert Detection identifies variable, moving, and transient sources within
a calibrated exposure by subtracting a deeper template image. Sources,
DIASources, detected on a DIAImage are associated with known Objects
(including SSObjects that have been propagated to the date of the CalExp
exposure) and their properties measured. The resulting DIAImages and
DIAObjects will be persisted by the Alert Detection pipeline.

Alert Detection pipeline shall difference, and detect and characterize
sources in the time required to achieve the 60 second design goal for nightly
processing (current timing allocation: 24 seconds). The algorithms employed
by the pipeline shall result in purity and completeness of the sample as
required by the DMSR . Image differencing shall perform as well in crowded
as in uncrowded fields.

3.2.0.15 Input Data: CalExp Calibrated exposure processed through
3.1 with associated WCS, PSF, mask, variance, and background estimation.

3.2.0.16 Input Data: Coadd TemplateCoadd images that spatially
overlap with the CalExp images processed through 3.1. This Coadd image
is optimized for image subtraction and is expected to be characterized in
terms of a tract/patch/filter. Generation of this template may account for
differential chromatic refraction or be generated for a limited range of airmass
and seeing.

https://docushare.lsstcorp.org/docushare/dsweb/Get/LSE-61

3 ALERT PRODUCTION 27

3.2.0.17 Input Data Product: Object Objects that spatially overlap
with the CalExp images processed through 3.1. This Object catalog will
provide the source list for determining nearest neighbors to the detected
DIASources.

Flatfield calibration images for all passbands and all CCDs appropriate
for the time at which the observations were undertaken

3.2.0.18 Input Data Product: DIAObjects DIAObjects that spa-
tially overlap with the CalExp images processed through 3.1. This DIAObject
catalog will provide the association list against which the DIASources will be
matched.

3.2.0.19 Input Data Product: SSObjects The SSObject list at the
time of the observation. The SSObject positions will be propagated to the
date of the CalExp observations and will provide an association list for
cross-matching against the DIASource list to identify known Solar System
objects.

3.2.0.20 Input Data Product: Reference Classification of DIASources
based on their morphological features (and possibly estimates of the local
density or environment associated with the DIASource) will be undertaken
prior to association in order to reduce the number of false positives. The data
structures that define these classifications will be required as an input to the
spuriousness analysis.

3.2.0.21 Output Data Product: DIAImage Image differences (DI-
AImage) derived from subtracting a CalExp from a TemplateCoadd image

3.2.0.22 Output Data Product: DIASource Sources detected and
measured from the DIAImages (DIASources) using the set of parameters
described in table will be persisted

3.2.0.23 Output Data Product: DIAObject DIASource will be as-
sociated with existing DIAObjects and persisted. New DIASource (i.e. those
not persisted) will generate a new instance of a DIAObject

3 ALERT PRODUCTION 28

3.2.0.24 Output Data Product: DIAForcedPhotometry For all
DIAObjects forced photometry will be undertaken given a time windowed
estimate of the DIAObject position.

The process for image differencing requires the following steps

• Creation or retrieval of a TemplateCoadd.

• Matching the astrometry and PSF of a CalExp to the TemplateCoadd
and subtracting the template image from the CalExp. This will require
accounting for the relative differences in image quality and noise between
the template and CalExp.

• (optional) Dependent on the density of sources deblending of difference
images may be necessary

• Measurement of image difference sources (accounting for whether the
CalExp image was preconvolved or not)

• Removal of spurious DIASources

• Association of the DIASources with previously detected DIAObjects
and SSObjects

• Forced measurement for all DIAObjects on the DIAImage

3.2.0.25 Template Generation
Template generation requires the creation or retrieval of a TemplateCoadd

w that is matched to the position and spatial extent of the input CalExp.
Generation of the TemplateCoadd could be from a persisted Coadd that
was generated from CalExp exposures with comparable (within a predefined
tolerance) airmass and parallactic angles or from a model that corrects for the
effect of differential chromatic refraction. It is expected that these operations
would be undertaken on a CCD level but for efficiency the TemplateCoadd
might be returned for a full visit.

3.2.0.26 Pipeline Tasks

• Query for a TemplateCoadd images that are within a given time interval
of the CalExp (default 2 years) of the current sensor image, and are
within a specified airmass and parallactic angle

3 ALERT PRODUCTION 29

• (optional) Derive an airmass and DCR corrected TemplateCoadd from
a model (see DCR template generation). The direction of the DCR
correction will be aligned with the “parallactic angle” of the CalExp
image

3.2.0.27 Image differencing
Image differencing incorporates the matching of a CalExp to a Template-

Coadd (astrometrically and in terms of image quality), subtraction of the
tempalte image, detection and measurement of DIASources, removal of spuri-
ous DIAsources, and association of the DIASources with previously identified
DIAObjects, Objects, and SSObjects.

3.2.0.28 Pipeline Tasks

• Determine a relative astrometric solution from the WCS of the Tem-
plateCoadd image and CalExp image

• Match DRP sources for the TemplateCoadd against sources from SFP
of the raw images

• Warp or resample the TemplateCoadd to match the astrometry of the
CalExp. It is possible that the an operation to astrometrically match
the TemplateCoadd and CalExp using faint source will need to be
undertaken dependent on the accuracy of the WCS.

• For CalExp images with an image quality that is better than the
TemplateCoadd preconvolve the CalExp image with the PSF use a
convolution kernel. This reduces the significance of any deconvolution
in the PSF matching.

• Match the PSF of the CalExp and TemplateCoadd images and construct
a spatial model for the matching kernel. This approach may include
matching to a common PSF through homogenization

• Apply the matching kernel and subtract the images to generate a
DIAImage

• Decorrelate the DIAImage to reduced the correlations in the noise due
to the convolution with the image differencing matching kernel.

3 ALERT PRODUCTION 30

• Detect DIAsources on the DIAImage. Convolution with a detection
kernel will depend on whether the CalExp was preconvolved in step 3

• Measure sources on the DIAImage including dipole models. The specific
algorithms used for measurement of DIASources will depend on whether
the CalExp image was preconvolved. Source measurements will include:
dipole fit, trailed source measurement

• Measure flux on snap difference for all DIASources

• Spuriousness algorithms also known as “real-bogus” may have to be
applied at this time dependent on the number of false positives. DI-
ASources classified as spurious at this stage may not be persisted
(dependent on the density of the false positives). The default technique
will be based on a trained random forest classifier. It is likely that
the training of this classifier will need to be conditioned on the image
quality and airmass of the observations.

3.2.0.29 Source Association
In Source Association DIASources detected within a given CCD will be

cross-matched (associated) with the DIAObject table and the SSObjects
(whose ephemerides have been generated for the time of the current observa-
tion. The association will be probabilistic and account for the uncertainties
within the positions. Dependent on the available computational resources
the association may include flux and priors on expected proper motions for
the sources. External targets (e.g. well resolved transient events from other
telescopes or instruments) can be incorporated within this component of the
nightly pipeline enabling either matching to DIASources or generation of
forced photometry at the position of the external source. It is not clear that
this is an objective of the pipeline.

3.2.0.30 Pipeline Tasks

• The ephemerides for SSObjects will be generated for those sources
overlapping a DIAImage

• Source association will be undertaken for all DIASources. Matching
will be to DIAObjects, and the ephemerides of SSObjects. Positions for

3 ALERT PRODUCTION 31

DIAObjects will be based on a a time windowed average of the DIA-
Sources that make up the DIAObject. A probabilistic association will
need to account for one-to-many and many-to-one associations. It may
be necessary to generate joint associations across all DIAObjects (and
associated DIASources) in the local vicinity of a DIASource to correct
for mis-assignment from previous observations. This could include the
pruning and reassignment of DIASources between DIAObjects.

• DIASources will be associated with the Object table from DRP. In its
simplest case this will be a nearest neighbor search that will define
a set of nearest neighbors (the default radius for association is not
defined) that will be persisted with DIAObjects as a measure of local
environment. More sophisticated association may be undertaken to
match the DIASources to Objects in order to enable access to the DRP
properties of a source (e.g. proper motion and parallax - see below).

• DIASources unassociated with a DIAObject will instantiate a new
DIAObject

• The agregate positions for the DIAObjects will be updated based on a
rolling time window (default 30 days).

• (optional) The proper motion and parallax will be updated. It is not
currently clear if there is a science case for generating proper motions
and parallaxes within the DIAObjects if the DRP Objects are available
for each source.

3.2.1 Prototype Implementation

The prototype code is available at https://github.com/lsst/ip_diffim.
The current prototype, while functional, will require a partial redesign to be
transfered to construction to address performance and extensibility concerns.

https://github.com/lsst/ip_diffim

3 ALERT PRODUCTION 32

Figure 3: The alert production flow of data through the processing pipelines
(single frame processing, alert detection, alert generation, precovery photome-
try)

3 ALERT PRODUCTION 33

3.3 Alert Generation Pipeline (WBS 02C.03.03)

3.3.1 Key Requirements

Alert Generation Pipeline shall take the newly discovered DIASources and
all associated metadata as described in the DPDD, and deliver alert packets
in VOEvent format to a variety of endpoints via standard IVOA protocols
(eg., VOEvent Transport Protocol; VTP).

To directly serve the end-users, the Alert Generation Pipeline shall provide
a basic, limited capacity, alert filtering service. This service will run at the
LSST U.S. Archive Center (at NCSA). It will let astronomers create simple
filters that limit what alerts, and what fields from those alerts, are ultimately
forwarded to them. These user defined filters will be possible to specify using
an SQL-like declarative language, or short snippets of (likely Python) code.

Since there is a need to keep both the alert database and the brokers
consistent, there is a big win if both the database and the brokers read from
the same fault tolerant intermediate persistence format. A redundant, cluster
based, strongly ordered, message system like Kafka (http://kafka.apache.org)
is a very attractive option as the intermediate persistence. It is very similar
in concept to persisting to some well known file format with the addition
of reduntant storage, configurable expiration time of messages, and strict
ordering so database catch-up is trivial. It is also scalable.

3.3.1.1 Input Data: Object DIAObjects that generated through image
differencing and association will be used to generate alert packets

3.3.1.2 Input Data: CalExp The CCD level CalExp will be used to
generate postage stamp or cut out images of DIAObjects within the CCD

3.3.1.3 Input Data: TemplateCoadd The TemplateCoadd used in the
image subtraction will be used to generate postage stamp or cut out images
of DIAObjects within the CCD

3.3.1.4 Input Data Product: DIAImage The image subtracted DI-
AImage will be used to generate postage stamp or cut out images of DIAOb-
jects within the CCD

https://docushare.lsstcorp.org/docushare/dsweb/Get/LSE-163

3 ALERT PRODUCTION 34

3.3.1.5 Output Data Product: VOevents VOEvents generated from
the DIAObjects will be persisted. The form of these persisted events has not
been decided.

3.3.1.6 Alert generation

3.3.1.7 Pipeline Tasks

• Generate postage stamps for all DIASources: direct image and difference
image

• Push alert records to alert persistence

• Alert database ingestion client reads all new alerts and persists them
permanently in the alert database

3.3.1.8 Alert Distribution: To community brokers

3.3.1.9 Pipeline Tasks

• For each visit read all new alert records from the alert persistence

• Package each message as a properly formatted VOEvent

• Bundle VOEvents using a pre-negotiated format

• Transmit bundled VOEvents to community broker endpoints

3.3.1.10 Alert Distribution: Minimal brokers Each minimal broker
will have some subset of users. The following is for a single broker.

3.3.1.11 Pipeline Tasks

• Read new alert records from the alert persistence in order

• Filter event records for relevance (WHERE)

• Filter event columns for content (SELECT)

• Package event as a valid VOEvent

• Publish the VOEvent to the appropriate endpoint (potentially another
messaging queue so clients can access asynchronously)

3 ALERT PRODUCTION 35

3.3.1.12 Forced Photometry on all DIAObjects

3.3.1.13 Pipeline Tasks

• Compute forced photometry on all DIAObjects in the field. This does
not end up in the alerts.

• Update the DIA Object forced photometry tables

3.3.2 Prototype Implementation

3 ALERT PRODUCTION 36

3.4 Precovery Photometry Pipeline

Input Data:

• Butler access to DIA images within finite time interval (default 30 days)

• Butler access to DIAobjects detected from the previous night with no
associations

Output Data

• Updated and persisted forced photometry tables for all newly detected
DIAobjects

3.4.1 Key Requirements

Within 24 hrs.

3.4.1.1 Precovery of new DIAObjects
Subtasks:

• Force photometer in difference images for all new DIAObjects for the
past 30 days.

3 ALERT PRODUCTION 37

3.5 Moving Object Pipeline (WBS 02C.03.06)

3.5.1 Key Requirements

The Moving Object Pipeline is responsible for generating and managing the
Solar System3 data products. These are Solar System objects with associated
Keplerian orbits, errors, and detected DIASources. Quantitatively, it shall be
capable of detecting 95% of all Solar System objects that meet the findability
criteria as defined in the OSS .

3.5.2 Baseline Design

Input Data

• ’Orphan’ DIASources from the last night of observing. This means
DIASources that are not associated with a DIAObject. DIASources
associated with an SSObject in the night are still passed through the
MOPS machinery

• DIAObject database

• SSObject database

• Exposure metadata database

Output Data

• Updated SSObject databaase

• Updated DIASource database

Anscillary Products

• Tracklet database

• Track database

• Intermediate orbit prediction database

3Also sometimes referred to as ‘Moving Object’

https://docushare.lsstcorp.org/docushare/dsweb/Get/LSE-30

3 ALERT PRODUCTION 38

Actions in case of failure
Alternative procedures

Subtasks:

• Feed all input orphan DIASources to [makeTracklets].

• Run attribution and precovery on with just the tracklets and DIASources
from the previous night. This culls any tracklets or DIASources that
obviously belong to an existing SSObject from the rest of the processing.

• Compute new orbits and merge orbits.

• Run attribution and precovery on with full survey of tracklets and
DIASources but only running over new SSObjects.

• Merge Orbits.

3.5.3 Prototype Implementation

Prototype MOPS codes are available at https://github.com/lsst/mops_

daymops and https://github.com/lsst/mops_nightmops. We expect it
will be possible to transfer a significant fraction of the existing code into
Construction. Current DayMOPS prototype already performs within the
computational envelope envisioned for LSST Operations, though it does not
yet reach the required completeness requirement.

https://github.com/lsst/mops_daymops
https://github.com/lsst/mops_daymops
https://github.com/lsst/mops_nightmops

4 CALIBRATION PRODUCTS PRODUCTION 39

4 Calibration Products Production

4.1 Calibration Products Pipeline (WBS 02C.04.02)

4.1.1 Key Requirements

The work performed in this WBS serves two complementary roles:

• It will enable the production of calibration data products as required by
the Level 2 Photometric Calibration Plan (LSE-180) and other planning
documents [20]4. This includes both characterization of the sensitivity
of the LSST system (optics, filters and detector) and the transmissivity
of the atmosphere.

• It will characterize of detector anomalies in such a way that they can
be corrected either by the instrument signature removal routines in the
Single Frame Processing Pipeline (WBS 02C.03.01) or, if appropriate,
elsewhere in the system;

• It will manage and provide a catalog of optical ghosts and glints to
other parts of the system upon demand.

4.1.2 Baseline Design

4.1.2.1 Instrumental sensitivity We expect laboratory measurements
of the filter profiles. We further baseline the development of a procedure for
measuring the filter response at 1 nm resolution using the approach described
in [20].

We baseline the following procedure for creating flat fields:

1. Record bias/dark frames;

2. Use “monochromatic” (1 nm) flat field screen flats with no filter in the
beam to measure the per-pixel sensitivity;

3. Use a collimated beam projector (CBP) to measure the quantum effi-
ciency (QE) at a set of points in the focal plane, dithering those points
to tie them together;

4Resolving contradictions between these documents is out of scope here.

https://docushare.lsstcorp.org/docushare/dsweb/Get/LSE-180

4 CALIBRATION PRODUCTS PRODUCTION 40

4. Combine the screen and CBP data to determine the broad band (10–
100 nm) QE of all pixels;

5. Fold in the filter response to determine the 1 nm resolution effective QE
of all pixels.

This WBS is responsible for the development of the data analysis al-
gorithms and software required and the ultimate delivery of the flat fields.
Development and commissioning of the CBP itself, together with any other
infrastructure required to perform the above procedure, lies outwith Data
Management (see 04C.08 Calibration System).

4.1.2.2 Atmospheric transmissivity Measurements from the auxiliary
instrumentation—to include the 1.2 m “Calypso” telescope, a bore-sight
mounted radiometer and satellite-based measurement of atmospheric parame-
ters such as pressure and ozone—will be used to determine the atmospheric
absorption along the line of sight to standard stars. The atmospheric trans-
mission will be decomposed into a set of basis functions and interpolated in
space in time to any position in the LSST focal plane.

This WBS will develop a pipeline for accurate spectrophotometric mea-
surement of stars with the auxiliary telescope. We expect to repurpose and
build upon publicly available code e.g. from the PFS5 project for this purpose.

This WBS will construct the atmospheric model, which may be based
either on modtran (as per LSE-180) or a PCA-like decomposition of the
data (suggested by [20]).

This WBS will define and develop the routine for fitting the atmospheric
model to each exposure from the calibration telescope and providing estimates
of the atmospheric transmission at any point in the focal plane upon request.

4.1.2.3 Detector effects An initial cross-talk correction matrix will be
determined by laboratory measurements on the Camera Calibration Optical
Bench (CCOB). However, to account for possibile instabilities, this WBS
will develop an on-telescope method. We baseline this as being based on
measurement with the CBP, but we note the alternative approach based on
cosmic rays adopted by HSC [13].

Multiple reflections between the layers of the CCD give rise to spatial
variability with fine scale structure in images which may vary with time [20,

5Subaru’s Prime Focus Spectrograph; http://sumire.ipmu.jp/pfs/.

https://docushare.lsstcorp.org/docushare/dsweb/Get/LSE-180
http://sumire.ipmu.jp/pfs/

4 CALIBRATION PRODUCTS PRODUCTION 41

§2.5.1]. These can be characterized by white light flat-fields. Preliminary
analysis indicates that these effects may be insignificant in LSST [23]; however,
the baseline calls for a a routine developed in this WBS to analyse the flat
field data and generate fringe frames on demand. This requirement may be
relaxed if further analysis (outside the scope of thie WBS) demonstrates it to
be unnecessary.

This WBS will develop algorithms to characterize and mitigate anomalies
due to the nature of the camera’s CCDs.



Note:
There’s a complex inter-WBS situation here: the actual mitiga-
tion of CCD anomalies will generally be performed in SFM (WBS
02C.03.01), based on products provided by this WBS which, in turn,
may rely on laboratory based research which is broadly outside
the scope of DM. We baseline the work required to develop the
corrective algorithms here. We consider moving it to WBS 02C.03.01
in future.


The effects we anticipate include:

• QE variation between pixels;

• Static non-uniform pixel sizes (e.g. “tree rings” [27]);

• Dynamic electric fields (e.g. “brighter-fatter” [2]);

• Time dependent effects in the camera (e.g. hot pixels, changing cross-talk
coefficients);

• Charge transfer (in)efficiency (CTE).

Laboratory work required to understand these effects is outwith the scope
of this WBS. In some cases, this work may establish that the impact of the
effect may be neglected in LSST. The baseline plan addresses these issues
through the following steps:

• Separate QE from pixel size variations6 and model both as a function
of position (and possibly time);

6Refer to work by Rudman.

4 CALIBRATION PRODUCTS PRODUCTION 42

• Learn how to account for pixel size variation over the scale of objects
(e.g. by redistributing charge);

• Develop a correction for the brighter-fatter effect and develop models
for any features which cannot be removed;

• Handle edge/bloom using masking or charge redistribution;

• Track defects (hot pixels);

• Handle CTE, including when interpolating over bleed trails.

4.1.2.4 Ghost catalog The Calibration Products Pipeline must provide
a catalog of optical ghosts and glints which is available for use in other parts of
the system. Detailed characterization of ghosts in the LSST system will only
be possible when the system is operational. Our baseline design therefore calls
for this system to be prototyped using data from precursor instrumentation;
we note that ghosts in e.g. HSC are well known and more significant than
are expected in LSST.

 Note:
It is not currently clear where the responsibility for characterizing
ghosts and glints in the system lies. We assume it is outwith this
WBS.



4.1.3 Constituent Use Cases and Diagrams

Produce Master Fringe Exposures; Produce Master Bias Exposure; Produce
Master Dark Exposure; Calculate System Bandpasses; Calculate Telescope
Bandpasses; Construct Defect Map; Produce Crosstalk Correction Matrix;
Produce Optical Ghost Catalog; Produce Master Pupil Ghost Exposure;
Determine CCOB-derived Illumination Correction; Determine Optical Model-
derived Illumination Correction; Create Master Flat-Spectrum Flat; Deter-
mine Star Raster Photometry-derived Illumination Correction; Create Master
Illumination Correction; Determine Self-calibration Correction-Derived Illumi-
nation Correction; Correct Monochromatic Flats; Reduce Spectrum Exposure;
Prepare Nightly Flat Exposures;

4 CALIBRATION PRODUCTS PRODUCTION 43

4.1.4 Prototype Implementation

While parts of the Calibration Products Pipeline have been prototyped by
the LSST Calibration Group (see the LSE-180 for discussion), these have not
been written using LSST Data Management software framework or coding
standards. We therefore expect to transfer the know-how, and rewrite the
implementation.

https://docushare.lsstcorp.org/docushare/dsweb/Get/LSE-180

4 CALIBRATION PRODUCTS PRODUCTION 44

4.2 Photometric Calibration Pipeline (WBS 02C.03.07)

4.2.1 Key Requirements

The Photometric Calibration Pipeline is required to internally calibrate the
relative photometric zero-points of every observation, enabling the Level 2
catalogs to reach the required SRD precision.

4.2.2 Baseline Design

The adopted baseline algorithm is a variant of “ubercal” [22, 25]. This
baseline is described in detail in the Photometric Self Calibration Design and
Prototype Document (UCAL).

4.2.3 Constituent Use Cases and Diagrams

Perform Global Photometric Calibration;

4.2.4 Prototype Implementation

Photometric Calibration Pipeline has been fully prototyped by the LSST
Calibration Group to the required level of accuracy and performance (see the
UCAL document for discussion).

As the prototype has not been written using LSST Data Management
software framework or coding standards, we assume a non-negligible refactor-
ing and coding effort will be needed to convert it to production code in LSST
Construction.

https://docushare.lsstcorp.org/docushare/dsweb/Get/Document-15125
https://docushare.lsstcorp.org/docushare/dsweb/Get/Document-15125

4 CALIBRATION PRODUCTS PRODUCTION 45

4.3 Astrometric Calibration Pipeline (WBS 02C.03.08)

4.3.1 Key Requirements

The Astrometric Calibration Pipeline is required to calibrate the relative and
absolute astrometry of the LSST survey, enabling the Level 2 catalogs to
reach the required SRD precision.

4.3.2 Baseline Design

Algorithms developed for the Photometric Calibration Pipeline (WBS 02C.03.07)
will be repurposed for astrometric calibration by changing the relevant func-
tions to minimize. This pipeline will further be aided by WCS and local
astrometric registration modules developed as a component of the Single
Frame Processing pipeline (WBS 02C.03.01).

Gaia standard stars will be used to fix the global astrometric system. It
is likely that the existence of Gaia catalogs may make a separate Astrometric
Calibration Pipeline unnecessary.

4.3.3 Constituent Use Cases and Diagrams

Perform Global Astrometric Calibration;

4.3.4 Prototype Implementation

The Astrometric Calibration Pipeline has been partially prototyped by the
LSST Calibration Group, but outside of LSST Data Management software
framework. We expect to transfer the know-how, and rewrite the implemen-
tation.

5 DATA RELEASE PRODUCTION 46

5 Data Release Production

A Data Release Production is run every year (twice in the first year of
operations) to produce a set of catalog and image data products derived from
all observations from the beginning of the survey to the point the production
began. This includes running a variant of the difference image analysis run in
Alert Production, in addition to direct analysis of individual exposures and
coadded images. The data products produced by a Data Release Production
are summarized in table 2.

From a conceptual standpoint, data release production can be split into
six groups of pipelines, executed in approximately the following order:

1. We characterize and calibrate each exposure, estimating point-spread
functions, background models, and astrometric and photometric calibra-
tion solutions. This iterates between processing individual exposures
independently and jointly fitting catalogs derived from multiple over-
lapping exposures. These steps are described more fully in section 5.1.

2. We alternately combine images and subtract them, using differences
to find artifacts and time-variable sources while building coadds that
produce a deeper view of the static sky. Coaddition and difference
imaging is described in section 5.2.

3. We process coadds to generate preliminary object catalogs, including
detection, deblending, and the first phase of measurement. This is
discussed in section 5.3.

4. We resolve overlap regions in our tiling of the sky, in which the same
objects have been detected and processed multiple times. This is
described in section 5.4.

5. We perform more precise measurements of objects by fitting models to
visit-level images, either simultaneously or individually, as discussed in
section 5.5.

6. After all image processing is complete, we run additional catalog-only
pipelines to fill in additional object properties. Unlike previous stages,
this postprocessing is not localized on the sky, as it may use statistics
computed from the full data release to improve our characterization of in-
dividual objects. This stage is not shown in Figure 4, but postprocessing
pipelines are described in section 5.6.

5 DATA RELEASE PRODUCTION 47

Figure 4: Summary of the Data Release Production processing flow. Pro-
cessing is split into multiple pipelines, which are conceptually organized into
the groups discussed in sections 5.1-5.5. A final pipeline group discussed in
section 5.6 simply operates on the catalogs and is not shown here.

5 DATA RELEASE PRODUCTION 48

Name Availability Description

Source Stored Measurements from direct analysis of in-
dividual exposures.

DIASource Stored Measurements from difference imagine
analysis of individual exposures.

Object Stored Measurements for a single astrophysical
object, derived from all available infor-
mation, including coadd measurements,
simultaneous multi-epoch fitting, and
forced photometry. Does not include solar
system objects.

DIAObject Stored Aggregate quantities computing by asso-
ciating spatially colocated DIASources.

ForcedSource Stored Flux measurements on each direct and
difference image at the position of every
Object.

SSObject Stored Solar system objects derived by associat-
ing DIASources and inferring their orbits.

CalExp Regenerated Calibrated exposure images for each
CCD/visit (sum of two snaps).

DiffExp Regenerated Difference between CalExp and PSF-
matched template coadd.

DeepCoadd Stored Coadd image with a reasonable combina-
tion of depth and resolution.

EpochRangeCoadd Renegerated Coadd image that cover only a limited
range of epochs.

BestSeeingCoadd Regenerated Coadd image built from only the best-
seeing images.

PSFMatchedCoadd Regenerated Coadd image with a constant, predeter-
mined PSF.

Table 2: Table of public data products produced during a Data Release
Production. A full description of these data products can be found in the
Data Products Definition Document (LSE-163).

5 DATA RELEASE PRODUCTION 49

This conceptual ordering is an oversimplification of the actual processing flow,
however; as shown in Figures 4 and 5, the first two groups are interleaved.

Each pipeline in this the diagram represents a particular piece of code
excuted in parallel on a specific unit of data, but pipelines may contain
additional (and more complex) parallelization to further subdivide that data
unit. The processing flow also includes the possibility of iteration between
pipelines, indicated by cycles in the diagram. The number of iterations in each
cycle will be determined (via tests on smaller productions) before the start
of the production, allowing us to remove these cycles simply by duplicating
some pipelines a fixed number of times. Decisions on the number of iterations
must be backed by QA metrics. The final data release production processing
can thus be described as a directed acyclic graph (DAG) to be executed by
the orchestration middleware, with pipelines as edges and (intermediate) data
products as vertices. Most of the graph will be generated by applications
code before the production begins, using a format and/or API defined by
the orchestration middleware. Howver, some parts of the graph must be
generated on-the-fly; this will be discussed further in section 5.5.1.

5.1 Image Characterization and Calibration

The first steps in a Data Release Production characterize the properties of
individual exposures, by iterating between pixel-level processing of individual
visits (“ImChar”, or “Image Characterization” steps) and joint fitting of all
catalogs overlapping a tract (“JointCal”, or “Joint Calibration” steps). All
ImChar steps involve fitting the PSF model and measuring Sources (gradually
improving these as we iterate), while JointCal steps fit for new astrometric
(WCS7) and photometric solutions while building new reference catalogs for
the ImChar steps. Iteration is necessary for a few reasons:

• The PSF and WCS must have a consistent definition of object centroids.
Celestial positions from a reference catalog are transformed via the
WCS to set the positions of stars used to build the PSF model, but the
PSF model is then used to measure debiased centroids that feed the
WCS fitting.

• The later stages of photometric calibration and PSF modeling require
secure star selection and colors to infer their SEDs. Magnitude and

7This is not limited to FITS standard transformations; see Section 9.11.

5 DATA RELEASE PRODUCTION 50

morphological measurements from ImChar stages that supersede those
in the reference catalogs are aggregated and used to update it in the
subsequent JointCal stage, allowing these colors and classifications to
be used for PSF modeling in the following ImChar stage.

The ImChar and JointCal iteration is itself interleaved with background
matching and difference imaging, as described in section 5.2. This allows
the better backgrounds and masks to be defined by comparisons between
images before the final Source measurements, image characterizations, and
calibrations.

Each ImChar pipeline runs on a single visit, and each JointCal pipeline
runs simultaneously on all visits within a single tract, allowing tracts to be
run entirely independently. Some visits may overlap multiples tracts, however,
and will hence be processed multiple times.

The final output data products of the ImChar/JointCal iteration are the
Source table and the CalExp (calibrated exposure) images. CalExp is an
Exposure, and hence has multiple components that we will track separately.

5.1.1 BootstrapImChar

The BootstrapImChar pipeline is the first thing run on each science exposure
in a data release. It has the difficult task of bootstrapping multiple quantities
(PSF, WCS, background model, etc.) that each normally require all of the
others to be specified when one is fit. As a result, while the algorithmic
components to be run in this pipeline are generally clear, their ordering
and specific requirements are not; algorithms that are run early will have a
harder task than algorithms that are run later, and some iteration will almost
certainly be necessary.

A plausible (but by no means certain) high-level algorithm for this pipeline
is given below in pseudocode. Highlighted terms are described in more detail
below the pseudocode block.

def BootstrapImChar(raw, reference):

Some data products components are visit -wide and some are per -CCD;

these imaginary data types lets us deal with both.

VisitExposure also has components; most are self -explanatory , and

{mi} == {image ,mask ,variance} (for "MaskedImage ").

calexp = VisitExposure ()

sources = VisitCatalog ()

snaps = VisitMaskedImageList () # holds both snaps , but only {image ,mask ,variance}

parallel for ccd in ALL_SENSORS:

snaps[ccd] = [RunISR(raw[ccd]) for snap in SNAP_NUMBERS]

snaps[ccd].mask = SubtractSnaps(snaps[ccd])

5 DATA RELEASE PRODUCTION 51

calexp[ccd].mi = CombineSnaps(snaps[ccd])

calexp.psf = FitWavefront(calexp[WAVEFRONT_SENSORS].mi)

calexp .{image ,mask ,variance ,background}

= SubtractBackground(calexp.mi)

parallel for ccd in ALL_SENSORS:

sources[ccd] = DetectSources(calexp .{mi ,psf})

sources[ccd] = DeblendSources(sources[ccd], calexp .{mi,psf})

sources[ccd] = MeasureSources(sources[ccd], calexp .{mi,psf})

matches = MatchSemiBlind(sources , reference)

while not converged:

SelectStars(matches , exposures)

calexp.wcs = FitWCS(matches , sources , reference)

calexp.psf = FitPSF(matches , sources , calexp .{mi,wcs})

WriteDiagnostics(snaps , calexp , sources)

parallel for ccd in ALL_SENSORS:

snaps[ccd] = SubtractSnaps(snaps[ccd], calexp[ccd].psf)

calexp[ccd].mi = CombineSnaps(snaps[ccd])

calexp[ccd].mi = SubtractStars(calexp[ccd].{mi,psf}, sources[ccd])

calexp .{mi,background} = SubtractBackground(calexp.mi)

parallel for ccd in ALL_SENSORS:

sources[ccd] = DetectSources(calexp .{mi ,psf})

calexp[ccd].mi, sources[ccd] =

ReinsertStars(calexp[ccd].{mi,psf}, sources[ccd])

sources[ccd] = DeblendSources(sources[ccd], calexp .{mi,psf})

sources[ccd] = MeasureSources(sources[ccd], calexp .{mi,psf})

matches = MatchNonBlind(sources , reference)

calexp.psf.apcorr = FitApCorr(matches , sources)

parallel for ccd in SCIENCE_SENSORS:

sources[ccd] = ApplyApCorr(sources[ccd], calexp.psf)

return calexp , sources

Much of this pipeline is an iteration that incrementally improves detection
depth while improving the PSF model. This loop is probably only necessary
in crowded fields, where it will be necessary to subtract brighter stars in
order to detect fainter ones; we expect most high-latitude visits to require
only a single iteration. The details of the convergence criteria and changes in
behavior between iterations will be determined by future algorithm research.
It is also likely that some of the steps within the loop may be moved out
of the loop entirely, if they depend only weakly on quantities that change
between iterations.

5.1.1.1 Input Data Product: Raw Raw amplifier images from science
and wavefront CCDs, spread across one or more snaps. Needed telescope
telemetry (seeing estimate, approximate pointing) is assumed to be included
in the raw image metadata.

5.1.1.2 Input Data Product: Reference A full-sky catalog of refer-
ence stars derived from both external (e.g. Gaia) and LSST data.

5 DATA RELEASE PRODUCTION 52

The StandardJointCal pipeline will later define a deeper reference catalog
derived from this one and the new data being processed, but the origin and
depth of the initial reference catalog is largely TBD. It will almost certainly
include Gaia stars, but it may also include data from other telescopes, LSST
special programs, LSST commissioning observations, and/or the last LSST
data release. Decisions will require some combination of negotation with the
LSST commissioning team, specification of the special programs, experiments
on our ability to accurately type faint stars using the Gaia catalog, and
policy decisions from DM leadership on the degree to which data releases are
required to be independent. Depending on the choices selected, it could also
require a major separate processing effort using modified versions of the data
release production pipelines.

5.1.1.3 Output Data Product: Source A preliminary version of the
Source table. This could contain all of the columns in the DPDD Source
schema if the MeasureSources is appropriately configured, but some of these
columns are likely unnecessary in its role as an intermediate data product
that feeds StandardJointCal, and it is likely that other non-DPDD columns
will be present for that role.

BootstrapImChar also has the capability to produce even earlier versions of
the Source table for diagnostic purposes (see WriteDiagnostics). These tables
are not associated with any photometric calibration or aperture correction,
and some may not have any measurements besides centroids, and hence are
never substitutable for the final Source table.

5.1.1.4 Output Data Product: CalExp A preliminary version of the
CalExp (calibrated direct exposure). CalExp is an Exposure object, and
hence it has several components; BootstrapImChar creates the first versions
of all of these components (though some, such as the VisitInfo, are merely
copied from the raw images). Some CalExp components are determined at
the scale of a full FoV and hence should probably be persisted at the visit
level (PSF, WCS, PhotoCalib, Background), while others are straightforward
CCD-level data products (Image, Mask, Uncertainty).

5.1.1.5 RunISR Delegate to the ISR algorithmic component to perform
standard detrending as well as brighter-fatter correction and interpolation
for pixel-area variations (Warping Irregularly-Sampled Images). It is possible

5 DATA RELEASE PRODUCTION 53

that these corrections will require a PSF model, and hence must be backed-out
and recorrected at a later stage when an improved PSF model is available.

We assume that the applied flat field is appropriate for background esti-
mation.

5.1.1.6 SubtractSnaps Delegate to the Snap Subtraction algorithmic
component to mask artifacts in the difference between snaps. If passed a
PSF (as in the iterative stage of BootstrapImChar), also interpolate them by
delegating to the Artifact Interpolation algorithmic component.

We assume here that the PSF modeled on the combination of the two
Snaps is sufficient for interpolation on the Snaps individually; if this is not
true, we can just mask and interpolate both Snaps when an artifact appears
on either of them (or we could do per-Snap PSF estimation, but that’s a lot
more work for very little gain).

5.1.1.7 CombineSnaps Delegate to the Image Coaddition algorithmic
component to combine the two Snaps while handling masks appropriately.

We assume there is no warping involved in combining snaps. If this is
needed, we should instead consider treating each snap as a completely separate
visit.

5.1.1.8 FitWavefront Delegate to the Wavefront Sensor PSF algorith-
mic component to generate an approximate PSF using only data from the
wavefront sensors and observational metadata (e.g. reported seeing). Note
that we expect this algorithmic component to be contributed by LSST Sys-
tems Engineering, not Data Management. We start with a PSF estimated
from the wavefront sensors only because these should be able to use bright
stars that are saturated in the science exposures, mitigating the effect of
crowding; in high-latitude fields this step may be unnecessary.

The required quality of this PSF estimate is TBD; setting preliminary
requirements will involve running a version of BootstrapImChar with at least
mature detection and PSF-modeling algorithms on precursor data taken in
crowded fields, and final requirements will require proceessing full LSST
camera data in crowded fields. However, robustness to poor data quality and
crowding is much more important than accuracy; this stage need only provide
a good enough result for subsequent stages to prcoeed.

5 DATA RELEASE PRODUCTION 54

5.1.1.9 SubtractBackground Delegate to the Background Estimation
algorithmic component to model and subtract the background consistently
over the full field of view.

The multiple backgrounds subtracted in BootstrapImChar may or may
not be cumulative (i.e. we may or may not add the previous background back
in before estimating the latest one).

5.1.1.10 DetectSources Delegate to the Source Detection algorithmic
component to find above-threshold regions (Footprints) and peaks within
them in a PSF-correlated version of the image. We may first detect on the
original image (i.e. without PSF correlation) at a higher threshold to improve
peak identification for bright blended objects.

In crowded fields, each iteration of detection will decrease the threshold,
increasing the number of objects detected. Because this will treat fluctuations
in the background due to undetected objects as noise, we may need to extend
PSF-correlation to the appropriate filter for an image with correlated noise
and characterize the noise field from the image itself.

5.1.1.11 DeblendSources Delegate to the Single Frame Deblending al-
gorithmic component to split Footprints with multiple peaks into deblend
families, and generate HeavyFootprints that split each pixel’s values amongst
the objects that contribute to it.

5.1.1.12 MeasureSources Delegate to the Single Frame Measurement
algorithmic component to measure source properties.

In BootstrapImChar, we anticipate using the Neighbor Noise Replacement
approach to deblending, with the following plugin algorithms:

• Centroids

• Second-Moment Shapes

• Pixel Flag Aggregation

• Aperture Photometry

• Static Point Source Model Photometry

5 DATA RELEASE PRODUCTION 55

These measurements will not be included in the final Source catalog, so
they need only include algorithms necessary to feed later steps (and we may
not measure the full suite of apertures).

5.1.1.13 MatchSemiBlind Delegate to the Single Visit Reference Match-
ing algorithmic component to match source catalogs to a global reference
catalog. This occurs over the full field of view, ensuring robust matching even
when some CCDs have no matchable stars due to crowding, flux limits, or
artifacts.

“Semi-Blind” refers to the fact that the WCS is not yet well known (all
we have is what is provided by the observatory), so the matching algorithm
must account for an unknown (but small) offset between the WCS-predicted
sources positions and the reference catalog positions.

5.1.1.14 SelectStars Use reference catalog classifications and source flags
to select a clean sample stars to use for later stages.

If we decide not to rely on a pre-existing reference catalog to separate stars
from galaxies and other objects, we will need a new algorithmic component
to select stars based on source measurements.

5.1.1.15 FitWCS Delegate to the Single Visit Astrometric Fit algorith-
mic component to determine the WCS of the image.

We assume this works by fitting a simple mapping from the visit’s focal
plane coordinate system to the sky and composing it with the (presumed
fixed) mapping between CCD coordinates and focal plane coordinates. This
fit will be improved in later pipelines, so it does not need to be exact; <0.05
arcsecond accuracy should be sufficient.

As we iterate in crowded fields, the number of degrees of freedom in the
WCS should be allowed to slowly increase.

5.1.1.16 FitPSF Delegate to the Full Visit PSF Modeling algorithmic
component to construct an improved PSF model for the image.

Because we are relying on a reference catalog to select stars, we should be
able to use colors from the reference catalog to estimate SEDs and include
wavelength dependence in the fit. If we do not use a reference catalog early
in BootstrapImChar, PSF estimation here will not be wavelength-dependent.
In either case the PSF model will be further improved in later pipelines.

5 DATA RELEASE PRODUCTION 56

PSF estimation at this stage must include some effort to model the wings
of bright stars, even if this is tracked and constrained separately from the
model for the core of the PSF. This aspect of PSF modeling is considerably
less developed, and may require significant algorithmic research.

As we iterate in crowded fields, the number of degrees of freedom in the
PSF model should be allowed to slowly increase.

5.1.1.17 WriteDiagnostics If desired, the current state of the source,
calexp, and snaps variables may be persisted here for diagnostic purposes.

5.1.1.18 SubtractStars Subtract all detected stars above a flux limit
from the image, using the PSF model (including the wings). In crowded fields,
this should allow subsequent SubtractBackground and DetectSources steps
to push fainter by removing the brightest stars in the image.

Sources classified as extended are never subtracted.

5.1.1.19 ReinsertStars Add stars removed in SubtractStars back into
the image, and merge corresponding Footprints and peaks into the source
catalog. Information about the nature of these detections will be propagated
through the peaks.

5.1.1.20 MatchNonBlind Match a single-CCD source catalog to a global
reference frame, probably by delegating to the same matching algorithm used
in JointCal pipelines. A separate algorithm component may be needed for
efficiency or code maintenance reasons; this is a simple limiting case of the
multi-way JointCal matching problem that may or may not merit a separate
simpler implementation.

“Non-Blind” refers to the fact that the WCS is now known well enough
that there is no significant offset between WCS-projected source positions
and reference catalog positions.

5.1.1.21 FitApCorr Delegate to the Aperture Correction algorithmic
component to construct a curve of growth from aperture photometry mea-
surements and build an interpolated mapping from other fluxes (essentially
all flux measurements aside from the suite of fixed apertures) to the predicted
integrated flux at infinity.

5 DATA RELEASE PRODUCTION 57

Additional research may be required to determine the best aperture
corrections to apply to galaxy fluxes. Our baseline approach is to apply
the same correction to galaxies that we apply to stars, which is correct for
small galaxies and defines a consistent photometric system. This is formally
incorrect for large galaxies, but there is (to our knowledge) no formally correct
approach.

5.1.1.22 ApplyApCorr Delegate to the Aperture Correction algorithmic
component to apply aperture corrections to flux measurements.

5.1.2 StandardJointCal

In StandardJointCal, we jointly process all of the Source tables produced by
running BootstrapImChar on each visit in a tract. There are four steps:

1. We match all sources and the reference catalog by delegating to Joint-
CalMatching. This is a non-blind search; we assume the WCSs output
by BootstrapImChar are good enough that we don’t need to fit for any
additional offsets between images at this stage. Some matches will not
include a reference object, as the sources will almost certainly extend
deeper than the reference catalog.

2. We classify matches to select a clean samples of stars for later steps,
delegating to JointCalClassification. The samples for photometric and
astrometric calibration may be different (for instance, we may require
low variability only in the photometric fit and no proper motion only
in the astrometric fit). This uses morphological and possibly color
information from source measurements as well as reference catalog
information (where available). This step also assigns an inferred SED to
each match from its colors; whether this supersedes SEDs or colors in
the reference catalog depends on our approach to absolute calibration.

3. We fit simultaneously for an improved astrometric solution by requiring
each star in a match to have the same position, delegating to the
Joint Astrometric Fit algorithmic component. This will need to correct
(perhaps approximately) for centroid shifts due to DCR, proper motion,
and parallax; if it does not, it must be robust against these shifts
(perhaps via outlier rejection). This requires that StandardJointCal
have access to the VisitInfo component of each CalExp, in order to

5 DATA RELEASE PRODUCTION 58

calcluate DCR. The models and parameters to fit must be determined
by experimentation on real data (as they depend on the number of
degrees of freedom in the as-built system on different timescales), and
hence the algorithm must be flexible enough to fit a wide variety of
models. This fit updates the WCS component for each CalExp.

4. We fit simultaneously for a per-visit zeropoint and a smooth atmospheric
transmission correction by requiring each star in a match to have the
same flux after applying the per-poch smoothed monochromatic flat
fields produced by the calibration products pipeline, delegating to the
Joint Photometric Fit algorithmic component. This fit should also have
the ability to fit per-CCD photometric zeropoints for diagnostic purposes.
There is a small chance this fit will also be used to further constrain those
monochromatic flat fields. This fit updates the PhotoCalib component
for each CalExp.

In addition to updating the CalExp WCS and PhotoCalib, StandardJoint-
Cal generates a new Reference dataset containing the joint-fit centroids and
fluxes for each of its match groups as well as their classifications and inferred
SEDs. The sources included in the reference catalog will be a securely-classified
bright subset of the full source catalog.

StandardJointCal may be iterated with RefineImChar to ensure the PSF
and WCS converge on the same centroid definitions. StandardJointCal
is always run immediately after BootstrapImChar, but RefineImChar or
StandardJointCal may be the last step in the iteration run before proceding
with WarpAndPsfMatch.

If the Gaia catalog cannot be used to tie together the photometric calibra-
tion between different tracts, a larger-scale multi-tract photometric fit must
also be run (this is also discussed in the Joint Photometric Fit algorithmic
component), which would upgrade this step from a tract-level procedure
to a larger sequence point. It is unlikely this sequence point would extend
to the full survey. It would only be run once, but may happen in either
StandardJointCal or FinalJointCal.

5.1.3 RefineImChar

RefineImChar performs an incremental improvement on the PSF model
produced by BootstrapImChar, then uses this to produce improved source

5 DATA RELEASE PRODUCTION 59

measurements, assuming the improved reference catalog, WCS, and Photo-
Calib produced by StandardJointCal. Its steps are thus a strict subset of
those in BootstrapImChar. A pseudocode description of RefineImChar is
given below, but all steps refer to back to the descriptions in 5.1.1:

def RefineImChar(calexp, sources, reference):

matches = MatchNonBlind(sources , reference)

SelectStars(matches , exposures)

calexp.psf = FitPSF(matches , sources , calexp .{mi,wcs})

parallel for ccd in SCIENCE_SENSORS:

calexp[ccd].mi = SubtractStars(calexp[ccd].{mi,psf}, sources[ccd])

calexp .{mi,background} = SubtractBackground(calexp.mi)

parallel for ccd in SCIENCE_SENSORS:

sources[ccd] = DetectSources(calexp .{mi ,psf})

calexp[ccd].mi, sources[ccd] =

ReinsertStars(calexp[ccd].{mi,psf}, sources[ccd])

sources[ccd] = DeblendSources(sources[ccd], calexp .{mi,psf})

sources[ccd] = MeasureSources(sources[ccd], calexp .{mi,psf})

calexp.psf.apcorr = FitApCorr(matches , sources)

parallel for ccd in SCIENCE_SENSORS:

sources[ccd] = ApplyApCorr(sources[ccd], calexp.psf)

return calexp , sources

This is essentially just another iteration of the loop in in BootstrapImChar,
without the WCS-fitting or artifact-handling stages. Previously-extracted
wavefront information may again be used in PSF modeling, but we do not
expect to do any additional processing of the wavefront sensors in this pipeline.

Note that RefineImChar does not update the CalExp’s WCS, PhotoCalib,
or Uncertainty; the WCS and PhotoCalib will have already been better
constrained in StandardJointCal, and no changes have been made to the
pixels. The Image is only updated to reflect the new background, and the
Mask is only updated to indicate new detections.

5.1.4 FinalImChar

FinalImChar is responsible for producing the final PSF models and source
measurements. While similar to RefineImChar, it is run after at least one
iteration of the BackgroundMatchAndReject and possibly UpdateMasks
pipelines, which provide it with the final background model and mask.

The steps in FinalImChar are identical to those in RefineImChar, with
just a few exceptions:

• The background is not re-estimated and subtracted.

• The suite of plugin run by Single Frame Measurement is expanded to
included all algorithms indicated in the first column of Figure 6. This

5 DATA RELEASE PRODUCTION 60

should provide all measurements in the DPDD Source table description.

• We also classify sources by delegating to Single Frame Classification,
to fill the final Source table’s extendedness field. It is possible this will
also be run during RefineImChar and BootstrapImChar for diagnostic
purposes.

5.1.5 FinalJointCal

FinalJointCal is almost identical to StandardJointCal, and the details of
the differences will depend on the approach to absolute calibration and the
as-built performance of the surrounding pipelines. Because it is responsible
for the final photometric calibration, it may need to perform some steps that
could be omitted from StandardJointCal because they have no impact on
the ImChar pipelines. This could include a role in determining the absolute
photometric calibration of the survey, especially if a Gaia is relied upon
exclusively to tie different tracts together.

There is no need for FinalJointCal to produce a new or updated Reference
dataset (except for its own internal use), as subsequent steps do not need
one, and the DRP-generated reference catalog used by Alert Production will
be derived from the Object table. It will produce an updated WCS and
PhotoCalib for each CalExp, with the PhotoCalib possibly now reflecting
absolute as well as relative calibration.

As discussed in section 5.1.2, this pipeline may require a multi-tract
sequence point.

5.2 Coaddition and Difference Imaging

The next group of pipelines in a Data Release Production consists of image
coaddition and image differencing, which we use to separate the static sky from
the dynamic sky in terms of both astrophysical quantities and observational
quantities. This group also includes an iteration between pipelines that
combine images and pipelines that subtract the combined images from each
exposure. At each differencing step, we better characterize the features
that are unique to a single epoch (whether artifacts, background features,
or astrophysical sources); we use these characterizations to ensure the next
round of coadds include only features that are common to all epochs. Variable
objects will be particularly challenging in this context, as our models of their

5 DATA RELEASE PRODUCTION 61

effective coadded PSFs will be incorrect unless variability is included in those
models.

The processing flow in this pipeline group again centers around incremental
updates to the CalExp dataset, which are limited here to its Background
and Mask component (the Image component is also updated, but only to
subract the updated background). It will also return to the previous pipeline
group described in Section 5.1 to update other CalExp components. As in
the previous pipeline group, tracts are processed independently, and since
some visits overlap multiple tracts, multiple CalExps (one for each tract) will
be produced for the CCDs in these visits. The data flow between pipelines is
shown in Figure 5, with the numbered steps described further below:

1. The first version of the CalExp dataset is produced by running the
BootstrapImChar, StandardJointCal, and RefineImChar pipelines, as
described in Section 5.1.

2. We generate an updated Background and Mask via the Background-
MatchAndReject pipeline. This produces the final CalExp Background
and Image, and possibly the final Mask.

3. If the CalExp Mask has been finalized, we run the FinalImChar and
FinalJointCal pipelines. These produce the final PSF, WCS, and Photo-
Cal. If the Mask has not been finalized, we execute at least one iteration
of the next step before this one.

4. We run the WarpTemplates, CoaddTemplates, and DiffIm pipelines to
generate the DIASource and DIAExp datasets. We may then be able
to generate better CalExp Masks than we can obtain from Background-
MatchAndReject by comparing the DIAExp masks across visits in the
UpdateMasks pipeline.

5. After all CalExp components have been finalized, we run the WarpRe-
maining and CoaddRemaining to build additional coadd data products.

The baseline ordering of these steps is thus {1,2,3,4,5}, but {1,2,4,3,4,5}
is perhaps just as likely, and we may ultimately require an ordering that
repeats steps 2 or 3. Final decisions on the ordering and number of iteration
will require testing with mature pipelines and a deep dataset taken with a
realistic cadence; it is possible the configuration could even change between

5 DATA RELEASE PRODUCTION 62

Figure 5: Data flow diagram for the Data Release Production coaddition and
difference imaging pipelines. Processing proceeds roughly counterclockwise,
starting from the upper right with pipelines described in Section 5.1. Each
update to a component of the central CalExp dataset can in theory trigger
another iteration of a previous loop, but in practice we will “unroll” these
loops before production begins, yielding an acyclic graph with a series of
incrementally updated CalExp datasets. The nature of this unrolling and
the number of iterations will be determined by future algorithmic research.
Numbered steps above are described more fully in the text.

5 DATA RELEASE PRODUCTION 63

data releases as the survey increases in depth. Fortunately, this reconfiguring
should not require significant new algorithm development.

This pipeline group is responsible for producing the following final data
products:

CalExp See above.

DIAExp A CCD-level Exposure that is the difference between the CalExp
and a template coadd, in the coordinate system of the CalExp. It may
have the same PSF as the CalExp (if traditional PSF matching is used)
or its ownn PSF model (if the difference image is decorrelated after
matching).

DIASource A SourceCatalog containing sources detected and measured on
the DIAExp images.

ConstantPSFCoadd A coadd data product (Exposure or subclass thereof)
with a constant, predefined PSF.

DeepCoadd A coadd data product built to emphasize depth at the possible
expense of seeing.

BestSeeingCoadd A coadd data product built to emphasize image quality
at the possible expense of depth. Depending on the algorithm used,
this may be the same as DeepCoadd.

ShortPeriodCoadd A coadd data product built from exposures in a short
range of epochs, such as a year, rather than the full survey. Aside from
the cut on epoch range, this would use the same filter as DeepCoadd.

LikelihoodCoadd A coadd formed by correlating each image with its own
PSF before combining them, used for detection and possibly building
other coadds.

ShortPeriodLikelihoodCoadd Short-period likelihood coadds will also be
built.

TemplateCoadd A coadd data product used for difference imaging in both
DRP and AP. In order to produce templates appropriate for the level
of DCR in a given science image, these coadds may require a third
dimension in addition to the usual two image dimensions (likely either
wavelength or something proportional to airmass).

5 DATA RELEASE PRODUCTION 64

The nature of these coadd data products depends critically on whether we
are able to develop efficient algorithms for optimal coaddition, and whether
these coadds are suitable for difference imaging. These algorithms are mathe-
matically well-defined but computationally difficult; see DMTN-15 for more
information. We will refer to the coadds produced by these algorithms as
“decorrelated coadds”; a variant with constant PSF (“constant-PSF partially
decorrelated coadd”) is also possible. This choice is also mixed with the ques-
tion of how we will correct for differential chromatic refraction in difference
imaging; some algorithms for DCR correction involve templates that are the
result of inference on input exposures rather than coaddition. The alternative
strategies for using decorrelated coadds yield five main scenarios:

A We use decorrelated coadds for all final coadd products. DeepCoadd
and ShortPeriodCoadd will be standard decorrelated coadds with a
spatially-varying PSF, and ConstantPSFCoadd and TemplateCoadd will
be constant-PSF partially-decorrelated coadds. The BestSeeingCoadd
data product will be dropped, as it will be redundant with DeepCoadd.
This will make coadds more expensive and complex to build, and require
more algorithm development for coaddition, but will improve coadd-
based measurements and make it easier to warm-start multi-epoch
measurements. Difference imaging may be easier, and more visits may
be usable as inputs to templates due to softened or eliminated seeing
cut.

B We use decorrelated coadds for all coadds but TemplateCoadd. Mea-
surement is still improved, and the additional computational cost of
coaddition is limited to a single pipeline that is not run iteratively.
Difference imaging may be harder, and the number of visits eligible for
inclusion in templates may be reduced. In this scenario, we still have
two options for building templates:

B1 Templates will be built as PSF-matched coadds, or a product of
PSF-matched coadds.

B2 Templates are the result of inference on resampled exposures with
no PSF-matching.

C We do not use decorrelated coadds at all. DeepCoadd, BestSeeingCoadd,
and ShortPeriodCoadd will be direct coadds, and ConstantPSFCoadd
will be a PSF-matched coadd. Coaddition will be simpler and faster,

http://dmtn-015.lsst.io/en/latest/

5 DATA RELEASE PRODUCTION 65

but downstream algorithms may require more sophistication, coadd
measurements may be lower quality, and multi-epoch measurements
may be more difficult to optimize. Here we again have the same two
options for templates as option B:

C1 Templates will be built as PSF-matched coadds, or a product of
PSF-matched coadds.

C2 Templates are the result of inference on resampled exposures with
no PSF-matching.

It is also possible to combine multiple scenarios across different bands. In
particular, we may not need special templates to handle DCR in most bands,
so we may select a simpler approach in those bands. The final selection
between these options will require experiments on LSST data or precursor
data with similar DCR and seeing, though decorrelated coaddition algorithms
and some approaches to DCR correction may be ruled out earlier if preliminary
algorithm development does not go well.

Further differences in the pipelines themselves due to the presence or
absence of decorrelated coadds will be described in the sections below.

5.2.1 WarpAndPsfMatch

This pipeline resamples and then PSF-matches CalExp images from a visit
into a single patch-level image with a constant PSF. The resampling and PSF-
matching can probably be accomplished separately by delegating to the Image
Warping and PSF Homogenization algorithmic components, respectively.
These operations can also be performed in the opposite order if the matched-
to PSF is first transformed to the CalExp coordinate systems (so subsequent
resampling yields a constant PSF in the coadd coordinate system). Doing
PSF-matching first may be necessary (or at least easier to implement) for
undersampled images.

It is possible these operations will be performed simultaneously by a new
algorithmic component; this could potentially yield improved computational
performance and make it easier to properly track uncertainty. These improve-
ments are unlikely to be necessary for this pipeline, because these images and
the coadds we build from them will only be used to estimate backgrounds
and find artifacts, and these operations only require approximate handling
of uncertainty. However, other coaddition pipelines may require building an

5 DATA RELEASE PRODUCTION 66

algorithmic component capable of warping and PSF-matching simultaneously,
and if that happens, we would probably use it here as well. Simultane-
ously warping and PSF matching could also yield important computational
performance improvements.

The only output of the WarpAndPsfMatch pipeline is the MatchedWarp
Exposure intermediate data product. It contains all of the usual Exposure
components, which must be propagated through the image operations as well.
There is a separate MatchedWarp for each {patch, visit} combination, and
these can be produced by running WarpAndPsfMatch independently on each
such combination. However, individual CCD-level CalExps will be required
by multiple patches, so I/O use or data transfer may be improved by running
all WarpAndPsfMatch instances for a given visit together.

5.2.2 BackgroundMatchAndReject

This pipeline is responsible for generating our final estimates of the sky back-
ground and updating our artifact masks. It is one of the most algorithmically
uncertain algorithms in Data Release Production from the standpoint of
large-scale data flow and parallelization, and a working prototype has not yet
been demonstrated except for SDSS data, for which the drift-scan observing
strategy makes the problem easier. The problem is well-defined mathemati-
cally, however, and the main challenge is likely to be the parallelization and
data flow necessary to efficiently ensure consistent backgrounds over a full
tract. Tracts are stil processed independently, however.

The steps involved in background matching are described below. All
of these operations are performed on the MatchedWarp images; these are
all in the same coordinate system and have the same PSF, so they can be
meaningfully added and subtracted with no additional processing.

1. We define one of the visits that overlap an area of the sky as the
reference image. At least in the naive local specification of the algorithm,
this image must be smooth and continous over the region of interest.
This is done by the Build Background Reference pipeline, which must
artificially (but reversibly) enforce continuity in a reference image that
stitches together multiple visits to form a single-epoch-deep full tract
image, unless we develop an approach for dealing with discontinuity
downstream.

2. We subtract the reference image from every other visit image. This

5 DATA RELEASE PRODUCTION 67

must account for any artifical features due to the construction of the
reference image.

3. We run Source Detection on the per-visit difference images to find
artifacts and transient sources. We do not generate a traditional catalog
of these detections, as they will only be used to generate improved
CalExp masks; they will likely be stored as a sequence of Footprints.

4. We estimate the background on the per-visit difference images by dele-
gating to the Matched Background Estimation algorithmic component.
This difference background should be easier to be model than a direct
image background, as the image will be mostly free of sources and
astrophysical backgrounds. This stage must involve at least some com-
munication between patches to ensure that the background is continuous
and consistent in patch overlap regions.

5. We build a PSF-matched coadd by adding all of the visit images (in-
cluding the reference) and subtracting all of the difference image back-
grounds; this yields a coadd that contains only the reference image
background, which we then model and subtract by again using the
Background Estimation algorithmic component. This background es-
timation must also involve communication between patches to ensure
consistency. Combining the images will be performed by the Coaddition
algorithmic component, which will also generate new CalExp masks by
analyzing the per-pixel, multi-visit histograms of image and mask values
(e.g. generalized statistical outlier rejection) to distinguish transients
and artifacts from variable sources.

6. We combine the relevant difference backgrounds with the coadd back-
ground and transform them back to the CalExp coordinate systems to
compute new background models for each CalExp.

We are assuming in the baseline plan that we can use a matched-to PSF
in WarpAndPsfMatch large enough to match all visit images to it without
deconvolution. If a large matched-to PSF adversely affects subsequent pro-
cessing in BackgroundMatchAndReject, we may need to develop an iterative
approach in which we apply WarpAndPsfMatch only to better-seeing visits
first, using a smaller target PSF, run BackgroundMatchAndReject on these,
and then re-match everything to a larger target PSF and repeat with a larger

5 DATA RELEASE PRODUCTION 68

set of input visits. However, this problem would suggest that the DiffIm and
UpdateMasks pipelines would be even better at finding artifacts, so a more
likely mitigation strategy would be to simply defer final Mask generation to
after at least one iteration of those pipelines, as described in the discussion of
Figure 5 at the beginning of Section 5.2.

The outputs of BackgroundMarchAndReject are updated Background and
Mask components for the CalExp product. Because it is not built with the
final photometric and astrometric calibration, the PSF-matched coadd built
here is discarded.

5.2.3 WarpTemplates

This pipeline is responsible for generating the resampled visit-level images
(TemplateWarp) used to build template coadds for difference imaging. The
algorithmic content of this pipeline and the nature of its outputs depends on
whether we are using decorrelated coadds (option A at the beginning of 5.2),
PSF-matched coadds (B1 or C1), or inferring templates (B2 or C2).

If we are using decorrelated coadds (option A), the output is equivalent to
the LikelihoodWarp data product produced by the WarpRemaining pipeline
(aside from differences due to the state of the input CalExps), and the
algorithm to produce it the same:

• We correlate the image with its own PSF by delegating to the Convolu-
tion Kernels software primitive.

• We resample the image by delegating to the Image Warping algorithmic
component.

Here we should strongly consider developing a single algorithmic component
to perform both operations. These operations must include full propogation
of uncertainty.

If we are not using decorrelated coadds (B1 or C1), the output is equivalent
to the MatchedWarp data product, and the algorithm is the same as the
WarpAndPsfMatch pipeline. We cannot reuse existing MatchedWarps simply
because we need to utilize updated CalExps.

If we are inferring templates (B2 or C2), this pipeline is only responsible for
resampling, producing an output equivalent to the DirectWarp data product
produced by the WarpRemaining pipeline. This work is delegated to the
Image Warping algorithmic component.

5 DATA RELEASE PRODUCTION 69

5.2.4 CoaddTemplates

This pipeline generates the TemplateCoadd dataset used as the reference
image for difference imaging. This may not be a simple coadd, at least in g
(and possibly u and r); in order to correct for differential chromatic refraction
during difference imaging, we may need to add a wavelength or airmass
dimension to the usual 2-d image, making a 3-d dimensional quantity. The
size of the third dimension will likely be small, however, so it should be safe
to generally consider TemplateCoadd to be a small suite of coadds, in which a
2-d image is the result a different sum of or fit to the usual visit-level images
(the TemplateWarp dataset, in this case).

Most of the work is done by the DCR-Corrected Template Generation
algorithmic component, but its behavior depends on which of the coaddition
scenarios is selected from the list at the beginning of Section 5.2):

A,B1,C1 One or more coadd-like images (corresponding to different wave-
lengths, airmasses, etc.) are created by delegating to the Coaddition
algorithmic component to sum the TemplateWarp images with different
weights. A only: coadded images are then partially decorrelated to
constant PSF by delegating to the Coadd Decorrelation algorithmic
component.

B2,C2 The template is inferred from the resample visit images using an
inverse algorithm that is yet to be developed.

5.2.5 DiffIm

In the DiffIm pipeline, we subtract a warped TemplateCoadd from each
CalExp, yielding the DIAExp image, where we detect and characterize DIA-
Sources. This is quite similar to Alert Production’s Alert Detection pipeline
but may not be identical for several reasons. The AP variant must be op-
timized for low latency, and hence may avoid full-visit processing that is
perfectly acceptable in DRP. In addition, the input CalExps will have been
better characterized in DRP, which may make some steps taken in AP unim-
portant or even counterproductive. However, we expect that the algorithmic
components utilized in DRP are the same as those used by AP.

The steps taken by DRP DiffIm are:

1. Retrieve the DiffIm template appropriate for the CalExps to be processed
(probably handling a full visit at a time), delegating to the Template

5 DATA RELEASE PRODUCTION 70

Retrieval algorithmic component. This selects the appropriate region of
sky, and if necessary, collapses a higher-dimensional template dataset
to a 2-d image appropriate for the CalExp’s level of DCR.

2. (optional) Correlate the CalExp with its own PSF, delegating to the
Convolution Kernel software primitive. This is the “preconvolution”
approach to difference imaging, which makes PSF matching easier by
performing PSF-correlation for detection first, reducing or eliminat-
ing the need for deconvolution. This approach is theoretically quite
promising but still needs development.

3. Resample the template to the coordinate system of the CalExp, by
delegating to the Image Warping algorithmic component.

4. Match the template’s PSF to the CalExp’s PSF and subtract them, by
delegating to the Image Subtraction algorithmic component.

5. Run Source Detection on the difference image. We correlate the image
with its PSF first using the Convolution Kernels software primitive
unless this was done prior to subtraction.

6. (optional) Decorrelate the CalExp by delegating to the Difference Image
Decorrelation algorithmic component.

7. Run DiffIm Measurement on the difference image to characterize dif-
ference sources. If preconvolution is used but decorrelation is not,
the difference image cannot be measured using algorithms applied to
standard images; alternate algorithms may be developed for some mea-
surements, but perhaps not all.

DiffIm can probably be run entirely independently on each CCD image;
this will almost certainly be taken in Alert Production. However, joint
processing across a full visit may be more computationally efficient for at
least some parts of template retrieval, and PSF-matching may produce better
results if a more sophisticated full-visit matching algorithm is developed.

5.2.6 UpdateMasks

UpdateMasks is an optional pipeline that is only run if DIAExp masks are
being used to update CalExp masks. As such, it is not run after the last

5 DATA RELEASE PRODUCTION 71

iteration of DiffIm, and is never run if BackgroundMatchAndReject constructs
the final CalExp masks.

Like BackgroundMatchAndReject, UpdateMasks compares the histogram
of mask values at a particular spatial point to determine which masks cor-
respond to transients (both astrophysical sources and artifacts; we want to
reject both from coadds) and which correspond to variable objects. This work
is delegated to Coaddition.

5.2.7 WarpRemaining

This pipeline is responsible for the full suite of resampled images used to build
coadds in CoaddRemaining, after all CalExp components have been finalized.
It produces some combination of the following data products, depending on
the scenario(s) described at the beginning of Section 5.2:

LikelihoodWarp CalExp images are correlated with their own PSF, then
resampled, via the Convolution Kernels software primitive and the
Image Warping algorithmic component. LikelihoodWarp is computed
in all scenarios, but in option C it may not need to propagate uncer-
tainty beyond the variance, as the resulting coadd will be used only for
detection.

MatchedWarp As in WarpAndPsfMatch, CalExp images are resampled
then matched to a common PSF, using Image Warping and PSF Ho-
mogenization. MatchWarped is only produced in option C.

DirectWarp CalExp images are simply resampled, with no further process-
ing of the PSF, using Image Warping. DirectWarp is only produced in
option C.

Given that all of these steps involve resampling the image, it would be
desirable for computational reasons to do the resampling once up front, and
then proceed with the PSF processing. While this is mathematically possible
for all of these cases, it would significantly complicate the PSF correlation
step required for building LikelihoodWarps.

5.2.8 CoaddRemaining

In CoaddRemaining, we build the suite of coadds used for deep detection,
deblending, and object characterization. This includes the Likelihood, Short-
PeriodLikelihood, Deep, BestSeeing, ShortPeriod, and ConstantPSF Coadds.

5 DATA RELEASE PRODUCTION 72

The algorithms again depend on the scenarios outlined at the beginning
of Section 5.2:

A,B All non-template coadds are built from LikelihoodWarps. We start by
building ShortPeriodLikelihoodCoadds by simple coaddition of the Like-
lihoodWarps, using the Image Coaddition algorithmic component. We
decorrelate these using the Coadd Decorrelation algorithmic component
to produce ShortPeriodCoadds, then sum the ShortPeriodLikelihood-
Coadds to produce the full LikelihoodCoadd. The full LikelihoodCoadd
is then decorrelated to produce DeepCoadd and ConstantPSFCoadd.

C We generate LikelihoodCoadd and ShortPeriodLikelihoodCoadds using
the same approach as above (though the accuracy requirements for
uncertainty propagation are eased). ShortPeriodCoadd, DeepCoadd,
and BestSeeingCoadd are then built as different combinations of Direct-
Warp images, again using the Image Coaddition algorithmic component.
ConstantPSFCoadds are built by combining MatchedWarps.

These coadds must propagate uncertainty, PSF models (including aperture
corrections), and photometric calibration (including spatial- and wavelength-
dependent photometric calibration), in addition to pixel values.

5.3 Coadd Processing

In comparison to the previous two pipeline groups, coadd processing is
relatively simple. All pipelines operate on individual patches, and there is
no large-scale iteration between pipelines. These pipelines may individually
require complex parallelization at a lower level, as they will frequently have
memory usage above what can be expected to fit on a single core.

Coadd processing begins with the DeepDetect pipeline, which simply finds
above-threshold regions and peaks in multiple detection coadds. These are
merged in catalog-space in DeepAssociate, then deblended at the pixel level in
DeepDeblend. The deblended pixels are measured in MeasureCoadds, which
may also fit multiple objects simultaneously using the original undeblended
pixels.

5.3.1 DeepDetect

This pipeline simply runs the Source Detection algorithmic component on
combinations of LikelihoodCoadds and ShortPeriodLikelihoodCoadds, then

5 DATA RELEASE PRODUCTION 73

optionally performs additional preliminary characterization on related coadds.
These combinations are optimized for detecting objects with different SEDs,
and there are a few different scenarios for what combinations we’ll produce
(which are not mutually exclusive):

• We could simply detect on each per-band LikelihoodCoadds separately.

• We could build a small suite of cross-band LikelihoodCoadds corre-
sponding to simple and artificial but approximately spanning SEDs (flat
spectra, step functions, etc.).

• We could build a single χ2 coadd from the per-band coadds, which is
only optimal for objects the color of the sky noise, but may be close
enough to optimal to detect a broad range of SEDs.

Any of these combinations may also be used to combine ShortPeriodLikeli-
hoodCoadds.

We may also convolve the images further or bin them to improve our
detection efficiency for extended objects.

Actual detection on these images may be done with a lower threshold
than our final target threshold of 5σ, to account for loss of efficiency due
using the incorrect SED or morphological filter.

The details of the suite of detection images and morphological filters
is a subject requiring further algorithmic research on precursor data (or
LSST/ComCam data) at full LSST depths with at least approximately the
right filter set.

After detection, CoaddSources may be deblended and characterized by
running the Single Frame Deblending, Single Frame Measurement, and Single
Frame Classification algorithmic components on DeepCoadd and ShortPeri-
odCoadd combinations that correspond to the LikelihoodCoadd combinations
used for detection. These characterizations (like the rest of the CoaddSource
tables) will be discarded after the DeepAssociate pipeline is run, but may be
necessary to inform higher-level association algorithms run there. The require-
ments on characterization processing in this pipeline will be set by the needs
of the DeepAssociate pipeline, but we do not expect it to involve significant
new code beyond what will be used by the various ImChar pipelines.

The only output of DeepDetect is the suite of CoaddSource tables (one
for each detection image) containing Footprints (including their Peaks and
any characterizations necessary for association).

5 DATA RELEASE PRODUCTION 74

5.3.2 DeepAssociate

In DeepAssociate, we perform a sophisticated spatial match of all Coad-
dSources and DIASources, generating tables of DIAObjects, Object candi-
dates, and a table of unassociated DIASources that will be used to construct
SSObjects in MOPS. We do not include the Source table in this merge, as
virtually all Sources correspond to astrophysical objects better detected in
DeepDetect (as CoaddSources) or DiffIm (as DIASources).

The baseline plan for association is to first associate DIASources into
DIAObjects using the same approach used in Alert Production (i.e. the
DIAObject Generation algorithmic component), then associate DIAObjects
with the multiple CoaddSource tables (using the Object Generation algo-
rithmic component). DIASources not associated into DIAObjects will be
considered candidates for merging SSObjects, which will happen in the MOPS
pipeline.

These association steps must be considerably more sophisticated than
simple spatial matching; they must utilize the limited flux and classification
information available from detection to decide whether to merge sources
detected in different contexts. This will require astrophysical models to be
included in the matching algorithms at some level; for instance:

• We must be able to associate the multiple detections that correspond
to high proper-motion stars into a single Object.

• We must not associate supernovae with their host galaxies, despite the
fact that their positions may be essentially the same.

To meet these goals (as well as similar ones which still need to be specified),
DeepAssociate will have to generate multiple hypotheses for some blend fami-
lies. Some of these conflicting hypotheses will be rejected by the DeepDeblend,
while others may be present in the final Object catalog (flags will be used to
indicate different interpretations and our most likely interpretation). This is a
generalization of the simple parent/child hierarchy used to describe different
blend hypotheses in the SDSS database (see Section 2.3).

It is possible that associations could be improved by doing both merge
steps simultaneously (under the hypothesis that CoaddSource presence or
absence could be used to improve DIASource association). This is considered
a fallback option if the two-stage association procedure described above cannot
be made to work adequately.

5 DATA RELEASE PRODUCTION 75

The output of the DeepAssociate pipeline is the first version of the Object
table, containing a superset of all Objects that will be characterized in later
pipelines.

5.3.3 DeepDeblend

This pipeline simply delegates to the Multi-Coadd Deblending algorithmic
component to deblend all Objects in a particular patch, utilizing all non-
likelihood coadds of that patch. This yields HeavyFootprints containing
consistent deblended pixels for every object in every (non-likelihood) coadd,
while rejecting as many deblend hypotheses as possible to reduce the number
of hypotheses that must be subsequently measured.

While the pipeline-level code and data flow is simple, the algorithmic
component is not. Not only must deblending deal with arbirarily complex
superpositions of objects with unknown morphologies, it must do so consis-
tently across bands and epoch ranges (with different PSFs) and ensure proper
handling of Objects spawned by DIASources that may not even appear in
coadds. It must also parallelize this work efficiently over multiple cores; in
order to fit patch-level images for all coadds in memory, the processing of
at least the largest individual blend families must themselves be parallelized.
This may be done by splitting the largest blend families into smaller groups
that can be processed in parallel with only a small amount of serial iteration;
it may also be done by using low-level multithreading over pixels.

The output of the DeepDeblend pipeline is an update to the Object table,
which adds columns to indicate the origins of Objects and the decisions taken
by the deblender as well as modifying the set of rows to reflect the current
object definitions. It also includes attaching pixel-level deblend information
to each Object. If stored directly in the form of HeavyFootprints, this would
be a large dataset (comparable to the coadd pixel data). This form must
be available at least to the MeasureCoadds pipeline, but it almost certainly
needs to be available to science users as well. Depending on the deblender
implementation, it may be possible to instead store analytic models or some
other compressed form that would allow the full HeavyFootprints to be
reconstructed quickly on the fly, while requiring a relatively small amount
of additional per-object information. If this compression is lossy, it should
probably be applied before the deblend results are first used in MeasureCoadds
so the deblends used there can be exactly reconstructed later.

5 DATA RELEASE PRODUCTION 76

5.3.4 MeasureCoadds

The MeasureCoadds pipeline delegates to the Multi-Coadd Measurement
algorithmic component to jointly measure all Objects on all coadds in a
patch.

Like DeepDeblend, this pipeline is itself quite simple, but it delegates
to a complex algorithmic component (but a simpler one than Multi-Coadd
Deblending). There are three classes of open questions in how multi-coadd
measurement will proceed:

• What parameters will be fit jointly across bands, and which will be
fit independently? The measurement framework for multi-coadd mea-
surement is designed to support joint fitting, but it is likely that some
algorithms will simply be Single Frame Measurement or Forced Mea-
surement plugins that are simply run independently on the DeepCoadd
and/or ConstantPSFCoadd in each band. Making these decisions will
require experimentation on deep precursor and simulated data.

• How will we measure blended objects? Coadd measurement will at
least begin by using the HeavyFootprints produced by DeepDeblend
to use the Neighbor Noise Replacement approach, but we may then
use Simultaneous Fitting to generate improved warm-start parameters
for MultiFit or to build models we can use as PSF-deconvolved tem-
plates to enable the Deblend Template Projection approach in MultiFit
and/or ForcedPhotometry. If the deblender utilizes simultaneous fitting
internally, we may also be able to use the results of those fits directly
as measurement outputs or to reduce the amount of subsequent fitting
that must be done.

• How will we parallelize? As with DeepDeblend, keeping the full suite of
coadds in memory will require processing at least some blend families
using many cores. For algorithms that don’t require joint fitting across
different coadds, this could be done by measuring each coadd indepen-
dently, but the most expensive algorithms (e.g. galaxy model fitting)
are likely to be the ones where we’ll want to fit jointly across bands.

The output of the MeasureCoadds pipeline is an update to the Object
table, which adds columns containing measured quantities.

5 DATA RELEASE PRODUCTION 77

5.4 Overlap Resolution

The two overlap resolution pipelines are together responsible for finalizing
the definitions of Objects by merging redundant processing done in tract and
patch overlap regions. In most cases, object definitions in the overlap region
will be the same, making the problem trivial, and even when the definitions
are different we can frequently resolve the problem using purely geometrical
arguments. However, some difficult cases will remain, mostly relating to blend
families that are defined differently on either side.

We currently assume that overlap resolution actually drops Object rows
when it merges them; this will avoid redundant processing in the performance
critical MultiFit pipeline. A slower but perhaps safer alternative would be to
simply flag redundant Objects. This would also allow tract overlap resolution
to be moved after the MultiFit and ForcedPhotometry pipelines, which would
simplify large-scale parallelization and data flow by moving the first operation
requiring more than one tract (ResolveTractOverlaps) until after all image
processing is complete.

5.4.1 ResolvePatchOverlaps

In patch overlap resolution, all contributing patches to an area (there can be
between one and four) share the same pixel grid, and we furthermore expect
that they will have the same coadd pixel values. This should ensure that
any above-threshold pixel in one patch is also above threshold in all others,
which in turn should guarantee that patches agree on the extent of each blend
family (as defined by the parent Footprint).

A common pixel grid also allows us to define the overlap areas as exact
rectangular regions; we consider each patch to have an inner region (which
directly abuts the inner regions of neighboring patches) and an outer region
(which extends into the inner regions of neighboring patches). If we consider
the case of two overlapping patches, blend families in those patches can fall
into five different categories:

• If the family falls strictly within one patch’s inner region, it is assigned
to that patch (and the other patch’s version of the family is dropped).

• If the family crosses the boundary between patch inner regions...

– ...but is strictly within both patches’ outer regions, it is assigned to

5 DATA RELEASE PRODUCTION 78

the patch whose inner region includes more of the family’s footprint
area.

– ...but is strictly within only one patch’s outer region, it is assigned
to that patch.

– ...and is not strictly within either patch’s outer region, the two
families must be merged at an Object-by-Object level. The al-
gorithm used for this procedure is yet to be developed, but will
be implemented by the Blended Overlap Resolution algorithmic
component.

Overlap regions with more than two patches contributing have more possibili-
ties, but are qualitatively no different.

[
TODO:
Add figure explaining inner and outer patch regions.

]
If pixel values in patch overlap regions cannot be guaranteed to be identical,

patch overlap resolution becomes significantly harder (but no harder than
tract overlap resolution), because adjacent patches may disagree on the above
categories to which a family belongs.

Patch overlap resolution can be run independently on every distinct overlap
region that has a different set of patches contributing to it; in the limit of
many patches per tract, there are three times as many overlap regions as
patches (each patch has four overlap regions shared by two patches, and four
overlap regions each shared by four patches).

5.4.2 ResolveTractOverlaps

Tract overlap resolution operates under the same principles as patch overlap
resolution, but the fact that different tracts have different coordinate systems
and subtly different pixel values makes the problem significantly more complex.

While we do not attempt to define inner and outer regions for tracts, we
can still define discrete overlap regions in which the set of contributing tracts is
constant (though these regions must now be defined using spherical geometry).
Because tracts may differ on the extent and membership of blend families, it
will be useful here to define the concept of a “blend chain”: within an overlap
region a family’s blend chain is the recursive union of all families it overlaps

5 DATA RELEASE PRODUCTION 79

with in any tract that contributes to that overlap region see Figure TODO.
A blend chain is thus the maximal cross-tract definition of the extent of a
blend family, and hence we can use it to categorize blends in tract overlaps:

• If a blend chain is strictly contained by only one tract, all families
within that chain are assigned to that tract.

• If a blend chain is strictly contained by more than one tract, all families
within that chain are assigned to the tract whose center is closest to
the centroid of the blend chain.

• If a blend chain is not strictly contained by any tract, all families in
the chain must be merged at an Object-by-Object level. This is done
by the Blended Overlap Resolution algorithmic component, after first
transforming all measurements to a new coordinate system defined to
minimize distortion due to projection (such as a tangent projection at
the blend chain’s centroid).

ResolveTractOverlaps is the first pipeline in Data Release Production to
require access to processed results from more than one tract.

[
TODO:
Add figure explaining blend chains.

]

5.5 Multi-Epoch Object Characterization

The highest quality measurements for the vast majority of LSST objects
will be performed by the MultiFit and ForcedPhotometry pipelines. These
measurements include stellar proper motions and parallax, galaxy shapes and
fluxes, and light curves for all objects. These supersede many (but not all)
measurements previously made on coadds and difference images by using
deep, multi-epoch information to constrain models while fitting directly to
the original CalExp (or DIAExp) images.

The difference between the two pipelines is their parallelization axis:
an instance of the MultiFit pipeline processes a single Object family at a
time, utilizing all of the CalExps that overlap that family as input, while
ForcedPhotometry processes one CalExp or DIAExp at a time, iterating over
all Object families within its bounding box. Together these three pipelines
must perform three roles:

5 DATA RELEASE PRODUCTION 80

• Fit moving point source and galaxy models to all Objects, adding new
columns or updating existing columns in the Object table. This requires
access to all images simultaneously, so it must be done in MultiFit.

• Fit fixed-position point source models for each object (using the Mul-
tiFit-derived positions) to each DIAExp image separately, populating
the ForcedSource table. This differential forced photometry could con-
cievably be done in MultiFit, but will probably be more efficient to do
in ForcedPhotometry.

• Fit fixed-position point source models for each object to each CalExp
image separately, also populating the ForcedSource table. This direct
forced photometry can easily be done in either pipeline, but doing it
MultiFit should give us more options for dealing with blending, and it
may decrease I/O costs as well.

5.5.1 MultiFit

MultiFit is the single most computationally demanding pipeline in Data
Release Production, and its data flow is essentially orthogonal to that of all
previous pipelines. Instead of processing flow based on data products, each
MultiFit job is an Object family covering many distinct images, and hence
efficient I/O will require the orchestration layer to process these jobs in an
order that minimizes the number of times each image is loaded.

From the Science Pipelines side, MultiFit is implemented as two routines,
mediated by the orchestration later:

• The MultiFit “launcher” processes the Object table and defines family-
level MultiFit jobs, including the region of sky required and the cor-
responding data IDs and pixel-area regions (unless the latter two are
more efficiently derived from the sky area by the orchestration layer).

• The MultiFit “fitter” processes a single Object family, accepting all
required image data from the orchestration layer and returning an
Object record (and possibly a table of related ForcedSources). This is
the Multi-Epoch Measurement algorithmic component.

This simple picture is complicated by the presence of extremely large
blend families, however. Some blend families may be large enough that a
single MultiFit job could require more memory than is available on a full

5 DATA RELEASE PRODUCTION 81

node (or require more cores on a node than can be utilized by lower-level
parallelization). We see two possibilities for addressing this problem:

• The fitter could utilize cross-node communication to extend jobs over
more nodes. The most obvious approach would give each node full
responsibility for any processing on a group of full CalExps it holds in
memory, as well as responsibility for “directing” a number of MultiFit
jobs. These jobs would delegate pixel processing on CalExps to the
nodes responsible for them (this constitutes the bulk of the processing).
This would require low-latency but low-bandwidth communication;
the summary information passed between the directing jobs and the
CalExp-level processing jobs is much smaller than the actual CalExps
or even the portion of a CalExp used by a particular fitting job, but
this communication happens within a relatively tight loop (though not
the innermost loop). This approach will also require structuring the
algorithmic code to abstract out communication, and may require an
alternate mode to run small jobs for testing.

• The launcher could define a graph of sub-family jobs that correspond
to an iterative divide-and-conquer approach to large families. This
approach will require more flexibility in the algorithmic code to handle
more combinations of fixed and free parameters (to deal with neighboring
objects on the edges of the images being considered), more tuning
and experimentation, and more sophisticated launcher code. Fitting
individual large objects in this scenario could also require binning images
in the orchestration or data access layer.

It is unclear which of these approaches will be more computationally expensive.
The first option may reduce I/O or total network usage at the expense of
sensitivity to network latency. The second option may require redundant
processing by forcing iterative fitting, but that sort of iterative fitting may
lead to faster convergence and hence be used even in the first option.

If direct forced photometry is performed in MultiFit, moving-point source
models will simply be re-fit with per-epoch amplitudes allowed to vary inde-
pendently and all other parameters held fixed. The same approach could be
used to perform differential forced photometry, but this would require also
passing DIAExp pixel data to MultiFit.

Significant uncertainty also remains in how MultiFit will handle blending
even in small families, but this decision will not have larger-scale processing

5 DATA RELEASE PRODUCTION 82

impacts, and will be discussed further in Section 8.7.3.

5.5.2 ForcedPhotometry

In ForcedPhotometry, we simply measure point-source and possibly aperture
photometry (the baseline is point source photometry, but aperture photometry
should be implemented for diagnostic use and as a fallback) on individual
CalExp or DIAExp images, using positions from the Object table.

Aside from querying the Object table for the list of Objects overlapping
the image, all work is delegated to the Forced Measurement algorithmic
component. The only algorithmic challenge is how to deal with blending.
If only differential forced photometry is performed in this pipeline, it may
be appropriate to simply fit all Objects within each family simultaneously
with point source models. The other alterative is to project templates from
MultiFit or possibly MeasureCoadds and replace neighbors with noise (as
described in Sections 8.7.3.1 and 8.7.3.2).

5.6 Postprocessing

The pipelines in the postprocessing group may be run after nearly all image
processing is complete, and with the possible exception of MakeSelectionMaps,
include no image processing themselves. While we do not expect that these
pipelines will require significant new algorithm development, they include
some of the least well-defined aspects of Data Release Production; many of
these pipelines are essentially placeholders for work that may ultimately be
split out into multiple new pipelines or included in existing ones. Unlike the
rest of DRP, a more detailed design here is blocked more by the lack of clear
requirements and policies than a need for algorithmic research.

5.6.1 MOPS

MOPS plays essentially the same role in DRP that it plays in AP: it builds
the SSObject (Solar System Object) table from DIASources that have not
already been associated with DIAObjects. We will attempt to make its
implementation as similar as possible to the AP DayMOPS pipeline, but
the fact that DRP will run MOPS on all DIASources in the survey at once
(instead of incrementally) make this impossible in details. The steps in MOPS
are (with some iteration):

5 DATA RELEASE PRODUCTION 83

• Delegate to the Make Tracklets algorithmic component to combine
unassociated DIASources into tracklets.

• Delegate to the Attribution and Precovery algorithmic component to
predict the positions of known solar system objects and associate them
with tracklets. The definition of a “known” solar system object clearly
depends on the input catalog; this may be an external catalog or a
snapshot of the Level 1 SSObject table.

• Delegate to the Orbit Fitting algorithmic component to merge unasso-
ciated tracklets into tracks and fit orbits for SSObjects where possible.

The choice of initial catalog largely depends on the false-object rate in the
Level 1 SSObject; if the only improvements in data release production are
slightly improved orbit and/or new SSObjects, using the Level 1 SSObject
table could dramatically speed up processing – but it may also remove the
possibility of removing nonexistent objects.

[
Note:
TODO Reference appropriate subsection of AP section.

]
MOPS represents a full-survey sequence point in the production, but we

expect that it will be a relatively easy one to implement, because it operates on
relatively small inputs (unassociated DIASources) and produces a single new
table (SSObject) as its only major output (though IDs linking DIASources
and SSObjects must also be stored in either DIASource or a join table). This
should mean that it can be run after most other data products have already
been ingested, while requiring little temporary storage as the rest of the
processing proceeds tract-by-tract.

5.6.2 ApplyCalibrations

The processing described in the previous sections produces six tables that
ultimately must be ingested into the public database: Source, DIASource,
Object, DIAObject, SSObject, and ForcedSource. The quantities inSource are
either in raw units (e.g. fluxes are in counts, positions in pixels) or pseudo-raw
relative units (e.g. coadd-pixel counts or tract pixel coordinates). These
must be transformed into calibrated units via our astrometric and photomet-
ric solutions, a process we delegate to the Raw Measurement Calibration

5 DATA RELEASE PRODUCTION 84

algorithmic component. For the pseudo-raw relative units used for coadd
measurements and multifit results, these transformations are exact and hence
do not introduce any new uncertainty, but must still be applied.

This is the primary place where the wavelength-dependent photometric
calibrations generated by the Calibration Product Pipelines are applied. This
will require inferring an SED for every object (or source) from its measured
colors. The families of SEDs and the choice of color measurements used
are subjects for future algorithmic research, but it should be possible to
resolve these questions with relatively little effort. The inferred SED must
be recorded or deterministic, allowing science users to recalibrate as desired
with their own preferred SED. One possible complication here is that PSF
models are also wavelength dependent, and the SED for this purpose must
be inferred much earlier in the processing. Because it is highly desirable that
the SEDs used for PSF-dependent measurement be the same as those used
for photometric calibration, we may need to either infer SEDs early in the
processing from preliminary color measurements or estimate the response of
measurements to changes in PSF-evaluation SED so it can be approximately
updated later.

[
Note:
TODO Reference appropriate subsection of CPP section.

]
It is currently unclear when and where calibrations will be applied; there

are several options:

• We could apply calibrations to tables before ingesting them into the
public database; this would logically create new calibrated versions of
each table data product.

• We could apply calibrations to tables as we ingest them into the final
database.

• We could ingest tables into the temporary tables in the database and
apply the calibrations within the database.

Regardless of which option is chosen for each public table, the Raw Measure-
ment Calibration algorithmic component will need to support operation both
outside the database on in-memory table data and within the database (via,
e.g. user-defined functions). The former will be needed to apply calibrations

5 DATA RELEASE PRODUCTION 85

to intermediate data products for diagnostic purposes, while the latter will
be needed to allow Level 3 users to recalibrate objects according to their own
assumed SEDs.

5.6.3 MakeSelectionMaps

The MakeSelectionMaps is responsible for producing multi-scale maps that
describe LSST’s depth and efficiency at detecting different classes of object.
The details of what metrics will be mapped, the format and scale of the maps
(e.g. hierarchical pixelizations vs polygons), and the way the metrics will be
computed are all unknown.

The approach must be extensible at Level 3: science users will need to
build additional maps that can be utilized as efficiently by large collaborations
as DM-produced maps. This will ease the pressure on DM to provide a large
suite of maps, but the details of what DM will provide still needs to be
clarified to the community.

One potential major risk here is that the most common way to determine
accurate depth and selection metrics is to add fake sources to the data
and reprocess, and this can require reprocessing each unit of order 100
times. Because the reprocessing does not need to include all processing steps
(assuming the skipped steps can be adequately simulated), this should not
automatically be ruled out – if the pipelines that must be repeated (e.g.
DeepDetect) are significantly faster than skipped steps (such as MultiFit),
the overall impact on processing could still be negligible. Regardless, the
role of DM in this sort of characterization also needs to be clarified to the
community.

[
Note:
TODO Cite Balrog paper (Suchyta and Huff 2016)

]

5.6.4 Classification

In its simplest realization, this pipeline computes variability summary statis-
tics and probabilistic and/or discrete classification of each Object as a star
or galaxy; this may be extended to include other categories (e.g. QSO,
supernova).

5 DATA RELEASE PRODUCTION 86

Variability summary statistics are delegated to the Variability Characteri-
zation algorithmic component.

Type classification is delegated to the Object Classification algorithmic
component. This may utilize any combination of morphological, color, and
variability/motion information, and may use spatial information such as
galactic latitude as a Bayesian prior. Classifications based on only morphology
will also be available.

Both variability and type classification may require “training” on the full
Object and ForcedSource tables and/or similar tables derived from special
program data. This represents a potential full-survey sequence point for the
production.

The possible need for full-dataset processing suggests that it may be more
efficient to perform classification in the final public database, in order to
utilize it for large-scale aggregation calculations. This may not be feasible
if final public database tables are write-once, as classification may require
both read and write operations on Object. Putting the classification sequence
point before ingest would then require keeping the Object data products for
all tracts on disk before ingesting any of them.

Further specification of special programs (and DM plans for processing
them) and algorithmic research are needed to determine whether classification
actually will require a full-survey sequence point in the production.

5.6.5 GatherContributed

This pipeline is just a placeholder for any DM work associated with gathering,
building, and/or validating major community-contributed data products.

In addition to data products produced by DM, a data release production
also includes official products (essentially additional Object table columns)
produced by the community. These include photometric redshifts and dust
reddening maps. While DM’s mandate does not extend to developing algo-
rithms or code for these quantities, its responsibilities may include validation
and running user code at scale. The parties responsible for producing these
datasets and their relationship to DM needs to be better defined in terms of
policy before a system for including community-contributed data products in
a data release can be designed.

6 SERVICES FOR DATA QUALITY ANALYSIS (SDQA) 87

6 Services for Data Quality Analysis (SDQA)

6.1 Key Requirements

SDQA is a set of loosely coupled services intended to service LSST’s quality
assessment needs through all phases of Construction, Commissioning and
Operations. Consumers of these services may include developers, facility staff,
DAC (e.g., Level 3) users, and the general LSST science user community. Use
of these services is intended for routine characterisation, fault detection and
fault diagnosis.

• SDQA shall provide services for science data quality analysis of Level 1,
2, and Calibration Processing pipelines.

• SDQA shall provide services to support software development in Con-
struction, Commissioning and Operations.

• SDQA shall provide for the visualization, analysis and monitoring capa-
bilities needed for common science quality data analysis usecases. Its
inputs may be gathered from SDQA services, the production pipelines,
engineering data sources and non-LSST data sources.

• SDQA shall have the flexibility to support execution of ad-hoc (user-
driven) tests and analyses of ad-hoc datasets (provided they are sup-
ported by the LSST stack) within a standard framework.

• SDQA shall support use cases involving interactive “drill-down” of QA
data exposed through its visualization interfaces.

• SDQA shall allow for notifications to be issued when monitoring quan-
tities that fall outside permissible bounds and/or have degraded over
historical values.

• SDQA shall be able to collect and harvest the outputs and logs of
execution of a pipeline, and extract and expose metrics from these logs.

• SQDA shall make provision to store outputs that are not stored through
other LSST data access services.

• SDQA should be deployable as high-reliability scalable services for
production as well as allow for core data assessment functionality to be
executed on a developer’s local machine.

6 SERVICES FOR DATA QUALITY ANALYSIS (SDQA) 88

• SDQA shall be architected in a manner that would enable it to be
deployable on standard cloud architectures outside of the LSST facilities
so that community-based L3 development activities can be supported.

The majority of the work described in the section below falls under the
02C.10 WBS (Science Quality and Reliability Engineering). Exceptions are
noted in the text as appropriate.

6.2 Key Tasks for Each Tier of QA

SDQA system will provide a framework that is capable of monitoring QA
information at four different stages of capability and maturity:

QA Tier 0 Testing and Validation of the DM sub-system during software develop-
ment

QA Tier 1 Real-time data quality and system assesment during commissioning and
operations (also, forensics)

QA Tier 2 Quality assessment of Data Releases (also, forensics)

QA Tier 3 Ability for the community to evaluate the data quality of their own anal-
yses. These should made available as well-documented and deployable
versions of core QA Tier 0–2 services.

6.2.1 QA Tier 0

The first step to good quality data is good quality software. The purpose of
QA-0 services is to enable testing of the DM software during development as
well as validate software improvements during commissioning and operations,
quantifying the software performance against known and/or expected inputs
and outputs.

The core capabilities of QA-0 services are:

6.2.1.1 Continuous Integration Services

• Continuous integration services compile code to uncover build errors
and to trap failures in unit tests.

6 SERVICES FOR DATA QUALITY ANALYSIS (SDQA) 89

• Builds of references (tags, branches) that can happen on a schedule, on
developer request or on development events (e.g., merge to master)

• SDQA provides CI services on multiple reference platforms and uses
OS and compiler portability testing as a way to ensure the codebase is
well engineered for future use.

6.2.1.2 Test Execution Harness

• A test execution harness runs tests (such as data analysis unit tests) on
a regular cadence (eg nightly/weekly/monthly) to allow basic functional
checkout of the code. Tests can be added directly by developers and be
caused to execute without manual intervention, for example by checking
in code or a specification in a purpose built test repository.

• The test execution harness also allows the selection of a number of
appopriate reference datasets (see 6.2.1.5

• Results from such tests are exposed in such a way as to allow summary
reports and meaningful failure notifications.

6.2.1.3 Verification Metrics Code

• During Construction, progress towards meeting DM subsystem require-
ments revolve around the Key Performance Metrics (KPMs) outlined in
LDM-240. SDQA implements code to calculate these KPMs. Consult
reference to KPM Verification document for a list of those metrics and
how (and by whom and on what) they will be calculated.

• Additional metrics must be calculated to be met in order for the DM
subsystem to demonstrate its operational readiness. The list of those
metrics and how (and by whom) they will be calculated will be in
reference to DM Verification Plan CoDR document. In terms of QA
infrastructure, these metrics will not require different capabilities than
the KPMs.

• Verification code will be implemented in such a way that it can run
inline with normal pipeline processing on developer’s laptops.

6 SERVICES FOR DATA QUALITY ANALYSIS (SDQA) 90

• Additional metrics may be devised during construction that are helpful
to development or algorithm characterisation. SDQA will provide ways
of executing that code in a similar way to KPMs, but apps developers
may need to contribute the code (or at least document the algorithmic
approach) to calculate those metrics.

6.2.1.4 Computational Metrics

• While the scope of this document is the scientific aspects of the pipelines,
SDQA must also accommodate non-scientific KPMs and other metrics,
such as computational performance characterisation.

• SDQA will provide a capability to instrument the production pipelines
to calculate computational performance metrics

• The computational performance metrics that SDQA calculates will be
in practice surrogates for the actual computational performance in pro-
duction since those will depend on the production system architecture.
The purpose of calculating those as part of SDQA is to continuously
monitor relative performance to alert the developers that a regression
has occurred.

• SDQA can calculate modeled system performance from the surrogate
computational metrics if a model is provided to it (e.g., from Architec-
ture).

• A library of these instrumentations will be provided so that they can be
mixed and matched to pipelines depending on the performance metric
of interest.

6.2.1.5 Curated Datasets

• Part of the process for validating the software and its performance is
selecting rich but targeted standardized data sets to generate directly
comparable metrics between different versions of the software.

• SDQA will select and curate a combination of simulated and precursor
datasets that are modest enough for “canary” test runs but rich enough
to characterise the envelope of algorithmic performance.

6 SERVICES FOR DATA QUALITY ANALYSIS (SDQA) 91

• SDQA will “publish” (make available) these datasets so developers can
run the validation tests directly against them in their own environments.

6.2.1.6 SQUASH - Science Quality Analysis Harness SQUASH is
a QA-as-a-service architecture that comprises the following elements:

1. The execution of simple pipeline workflows for the purposes of QA

2. The construction of those QA workflows with an emphasis on usability
(not necessarily performance)

3. The collection and exposure of the results of those runs for further
retrieval and analysis

4. A monitoring system to detect threshold trespass and excursions from
past trends

Notes:

• As construction progresses, first-party DM systems to underwrite the
functions of SQUASH will become production ready. In the meantime,
basic implementations of minimum viable functionality may be done
with boostrap or off-the-shelf solutions either as an interim measure or,
in some cases, a more lightweight solution.

• A simple example of a “factory” analysis based on SQUASH is “Calcu-
late the astrometric repeatability on this dataset; display the trend; drill
down to to show the historgram of the points that went into calculating
this trend”.

• An advanced example of a bespoke analysis based on SQUASH is
“Display a three-color diagram of the sources in this run; compute the
width of point sources in the selected – e.g., blue – part of the locus”.

• SQUASH will likely expose results to the LSST Science User Interface
and Tools (SUIT) for advanced interaction scenarios (both because of
the SUIT team’s front-end expertise but also because they are likely
to be similar to science-driven interactions in intent and in execution).
See 6.2.5

6 SERVICES FOR DATA QUALITY ANALYSIS (SDQA) 92

6.2.2 QA Tier 1

QA-1 designates the capability to assess data quality in real-time observing
scenarios such as integration, commissioning and operations (as well as data
release production); if the role of QA-0 is to validate the software, the role of
QA-1 is to validate the performance of the facility.

There are two distinct aspects to this capability:

1. Some metric products and services serve standalone user-driven use cases
as in QA-0 but with additional data sources, such as the Engineering
and Facilities Database (EFD), and with real LSST data as opposed to
simulated data or pre-cursor data sets. An example use case is “Show
the width of point sources on data taken this week in windy conditions
with all vents closed versus only the vents in the wind direction as a
function of wind speed”.

2. Some metric products are produced as part of the routine opreational
processing for Level 1 and Calibration pipelines. These will predomi-
nantly use the production DM architecture at the Archive Center and
its satellites and produce metric products either through QA-specific
steps in the processing or via the outputs of task instrumentation. An
example use case is “show execution times of the deblending task as a
function of galactic latitude”.

“show the running time of the deblending step”

In the first case the architecture is based on components re-used from QA-0
(with modifications made if made necessary by more stringent performance
concerns). Additional out-of-scope (for DM) work may be funded by the
Commissioning WBS to support “quick-look” or “comfort display” scenarios
where some facility health data is gathered directly from Telescope & Site
systems as telemetry, in which case a component will be added to the QA-0
architecture to support this.

In the second case, the Level 1 DM system software and processing
infrastructure at the Archive Center is used. The Data Access framework
(DAX) is used to access all data including values from the EFD and Calibration
products.

Note that the EFD is specified to hold all telemetry generated by any
observatory system.

6 SERVICES FOR DATA QUALITY ANALYSIS (SDQA) 93

All QA-0 components will be involved in QA-1 workflows. The following
additional components originate from QA-1 requirements:

6.2.2.1 Alert QA There are two QA components developed for Alert
Production:

• A static analysis component that can check, for example, whether
the alerts conform to a valid format. This kind of component can be
incorporated in the normal Alert Production pipeline.

• A component to receive alerts (akin to a mini-broker) and collect
statistics on received events. This would run as a canary node outside
LSST facilities to test the alert system is functioning correctly.

• Source injection will be useful for non-producting testing of the Alert
Pipeline (see 6.2.6).

• SDQA can provide upper limits to verify AP requirements such as “no
more than 0.1% of images shall fail to produce alerts”

• Given the aggressive time budget for AP, SDQA can use an API or other
interface to the workflow system (if available) to abort further processing
in the event that image quality metrics are too low for successful Alert
Production to proceed.

6.2.2.2 Validation Metrics Performance As noted, the components
of QA-0 to devise key metrics are qualitatively suitable for QA-1. However:

• We expect to make some optimizations to prevent them from consuming
a significant portion of the 60-second alert time budget.

• In the area of computational performance metrics, additional metrics or
instrumentations could be needed due to specific elements of the data
center architecture, which at this point is still under design. These will
be provided under the Processing Control and Site Infrastructure WBS
(02C.07).

6 SERVICES FOR DATA QUALITY ANALYSIS (SDQA) 94

6.2.2.3 Dome / Operator Displays Some QA displays may be useful
as “comfort displays” (or “facility heartbeats”) to staff on site at the telescope,
or remote operators. If the design of the control room requires displays that
could not be generated from the DM-required SQuaSH capabilities, this work
will be provided from a non-DM (Commissioning) WBS.

6.2.2.4 Telescope Systems Outputs of the SQQA system may be re-
quired by the Observatory Control System in order to take some automated
action (e.g., reschedule a field). Whatever information is required will be
published as telemetry by means of the OCS Middleware.

6.2.2.5 Camera Calibration The SDQA system will also provide QA
of Calibration images and products.

• Images taken from the Camera will require “prompt QA” that will run
in the quasi-real-time image processing system. Camera is interested in
the monitoring infrastructure of SDQA for tracking parameters such as
read noice, cross-talk, linearity etc.

• QA of Calibration Products Production data products (i.e., master
calibration images and calibration database entries). These are similar
in architecture and implementation to other DRP-related tests. The
one exception to the above is the daily daytime/twilight calibration
operations prior to night-time observing. QA done for this calibration
sequence needs to run under Obsetvatory Control System. There is
therefore an explicit or implicit (via the DMCS) interface to the OCS
that is yet to be finalised.

• SDQA is responsible for prompt QA of the spectrometer and potentially
the sky background spectrometer.

6.2.2.6 Engineering and Commissioning Some data that is taken
specifically for engineering or commissioning purposes will require custom
treatment (e.g., an image that is taken with deliberately defocussed optics
should not trigger QA alarm and instead should have the noted characteristics
of the defocussed sources analysed). While architecturally these are the same
as other QA tests, the scope and work for this will be defined as part of the
Systems Engineering WBS.

6 SERVICES FOR DATA QUALITY ANALYSIS (SDQA) 95

6.2.2.7 Data Release Production The daily progress of DRP is char-
acteristically similar that of AP and will be instrumented and monitored by
SDQA in the same way.

6.2.3 QA Tier 2

QA-2 designates the capability to assess the periodic Data Release Products
that will be published by LSST. The key aspects that will add on to QA-1
capabilities are:

1. the ability to characterise and inspect large data sets;

2. detecting failure modes (excursions from expectation or specification)
that are rare in QA-0 analysis or real-time QA-1 processing, but repre-
sent an identifiable and systematic population or effect on the scale of
a full Data Release;

3. additional characterisation derived from calibration efforts in support
of the stringent relative color calibration requirements

The principal focus of QA-2 is to assess the quality of catalogue and image
data products of the data releases, perform quality assessment for astrometric
and photometric calibration and derived products, and look for problems with
the image processing pipelines and systematic problems with the instrument.

In addition to the components provided in QA-0, and QA-1, the new
components for QA-2 are:

6.2.3.1 DRP-specific dataset

• The scale of a DRP will impose additional performance requirements
on the calculation of key performance metrics and associated quality
metrics.

• The need to drill down with random access to the entire DRP data set
will fully exercise the SUIT capabilities.

6 SERVICES FOR DATA QUALITY ANALYSIS (SDQA) 96

6.2.3.2 Interfaces to Workflow and Provenance System(s) If the
SDQA system determines that data (whether science or calibration) is defec-
tive, it provides all the information required for the workflow system to take
action on this information.

A simple example of this is that a calibration is bad, and it needs to be
marked as such so that it is not used in further DRP processing (similar
to how if a data frame is bad and the compute time should not be wasted
processing it further for AP)

A more complex implementation is that a data product previously thought
to be good is on further processing or new tests determined to be bad. In
this case will be combined with provenance information to mark all data
polluted with the bad frame as bad, and provide sufficient information to the
workflow system to allow it to trigger the necessary reprocessing with that
data excluded.

These are implemented in a manner that is agnostic as to the implementa-
tion of the Workflow (e.g., they are values in a database table or API methods
that different workflow systems can utilize).

In order to support the interface to the provenance system it would be
useful to have some provenance analysis tools, that will allow an operator to
query specifically what data went into a particular data product or used a
specific data product. These would be very useful to QA but will be provided
by the Data Access Services WBS (02C.06).

[@KT - who deals wih the bad data system?]

6.2.3.3 Output Interface to Science Pipelines QA results may pro-
vide key feedback to model and parameter choices in the Science Pipelines.
The result of the QA system should be made available to the Science Pipelines
processing in clearly-tracked analysis and provenance via the normal pipeline
Data Access Services.

6.2.3.4 Comparison tools for overlap areas due to satellite process-
ing Data Release Processing may be distributed across multiple geographic
data centers. It is important to verify consistency (identity even) of the
results across these data centers by analyzing both subsets of the overall data
processing that are processed redundantly by each data center. A framework
to define the splits and overlap region and a coherent dashboard and QA con-
figuration to analyze these overlap regions will be key in building confidence

6 SERVICES FOR DATA QUALITY ANALYSIS (SDQA) 97

in the merged Data Release.

6.2.3.5 Metrics/products for science users to understand quality
of science data products (depth mask/selection function, etc.) The
Data Release Processing should generate statistics of depth, typical seeing,
etc. for regions of the sky; as well as selection functions for the sensitivity to
various types of objects. The code to produce those statistics will need to be
validated by processing of well-understood data.

6.2.3.6 Characterization report for Data Release

• Each Data Release will be accompanied by a detailed description of its
key data statistics, coverage, and quality metrics.

6.2.4 QA Tier 3

Data quality services will be made available for use with science analysis
performed by the LSST Science Collaborations and the community. Tier 0–2
visualization and data exploration tools will be made available (either as a
service or as documented deployable systems) to the community.

As community-driven data processing is not fully specified at this point,
further requirements of SDQA for L3 will be included in the Level 3 require-
ments and design documentation.

6.2.5 Interactive Visualization

Interactive visualisation and free-form data exploration are critical parts of
scientific and engineering insight, and for a system the size of LSST it cannot
be effectively done on a developer’s laptop and/or using traditional tooling. It
follows that for the QA process to happen effectively, more powerful tooling
will be necessary to support discovery workflows.

The design of these workflows is out of scope for the this document,
which is focused on pipelines generating the products defined in the Data
Products Definition Document and the design is described in a document
under preparation. But briefly, they fall into three categories:

1. Capabilities that involve structured pre-defined high-semantics displays
(e.g., dashboards) with fixed drill-down workflows. These will be defined

6 SERVICES FOR DATA QUALITY ANALYSIS (SDQA) 98

by the QA system, specifically the Science Quality Analysis Harness
interactive dashboards.

2. Capabilities that are similar to science-user workflows in that they
involve generic free-form exploration of the dataset. These will be
serviced through the Science User Interface through the Science User
Interface Data Analysis and Visualization Tools WBS (02C.05.02), with
the Data Access services acting as interface between the SUI and SDQA.
This is partly to leverage the superior features of the SUI system, and
partly to encourage early in-house testing of the SUI features.

3. A more complex case is the situation where curated pre-defined display
is desired, but free-form generic exploration of the results is required.
In this situation, SDQA will have an API or facility for exporting the
former into a tool suitable for the latter. One example of this would be a
QA report on, say, a standardised KPM measurement that is produced
as a Jupyter Notebook; the user can inspect it, or take it and further
interact with the results. Further design is underway in this area.

4. In some cases specific algorithms need to be implemented to drive re-
quired visualization scenarios; these are provided as part of the Alert
Production (02C.03) or Data Release Production (02C.04) as appro-
priate. An example of this is N-way matching across multiple visits
(9.5.8).

6.2.6 Who validates the validator?

QA services comprise a system of high semantic value to multiple audiences
- dome operators, software developers, science operations staff, data release
production engineers and science consumers. Therefore care must be taken
to design into the system sanity self-checks to ensure the reliability of its own
resuls as well as its upstream pipelines. This section outlines some of the
planned features in this area:

6.2.6.1 Intrinsic design features Many of the features described so far
provide an alert path for misbehaviours of the QA system. For example a
trending excursion for a specific key performance metric could either be due
to an algorithmic error or a validation code error. Either way, detection will
be a necessary first step to investigation.

6 SERVICES FOR DATA QUALITY ANALYSIS (SDQA) 99

6.2.6.2 Known Truth While it may be a matter of debate as to how ac-
curate construction-era simulations are compared to the eventual on-sky data,
they are extremely valuable as a fixed source of “known truth” which allow
for algorithmically simple QA tests that result in quantifiable performance.

6.2.6.3 Reference Truth [Someone like @Z should sign off on this]
Comm Cam may allow us to early on develop a small library of representative
“reference fields” (eg at different galactic latitudes or ecliptic planes) to provide
a minimal standard dataset against which competing algorithmic approaches
can be compared (this is similar to the approach taken in Construction with
percursor datasets). There would be made available outside the project too
alloweing groups working on alternative algoritms and/or implementations to
compare their results with the “factory” reductions. Finally, the possibility
exists that these reference fields could be unencumbered by proprietary periods
so that scientific groups without data rights (and perhaps not even interested
in LSST per se) could also utilise them for algorithmic and/or software
development.

7 SCIENCE USER INTERFACE AND TOOLKIT 100

7 Science User Interface and Toolkit

7.1 Science Pipeline Toolkit (WBS 02C.01.02.03)

7.1.1 Key Requirements

The Science Pipeline Toolkit shall provide the software components, services,
and documentation required to construct Level 3 science pipelines out of
components built for Level 1 and 2 pipelines. These pipelines shall be
executable on LSST computing resources or elsewhere.

7.1.2 Baseline Design

The baseline design assumes that Level 3 pipelines will use the same Tasks

infrastructure (see the Data Management Middleware Design document;
DMMD) as Level 1 and 2 pipelines8. Therefore, Level 3 pipelines will largely
be automatically constructible as a byproduct of the overall design.

The additional features unique to Level 3 involve the services to upload/-
download data to/from the LSST Data Access Center. The baseline for these
is to build them on community standards (VOSpace).

7.1.3 Constituent Use Cases and Diagrams

Configure Pipeline Execution; Execute Pipeline; Incorporate User Code into
Pipeline; Monitor Pipeline Execution; Science Pipeline Toolkit; Select Data
to be Processed; Select Data to be Stored;

7.1.4 Prototype Implementation

While no explicit prototype implementation exists at this time, the majority
of LSST pipeline prototypes have successfully been designed in modular and
portable fashion. This has allowed a diverse set of users to customize and
run the pipelines on platforms ranging from OS X laptops, to 10,000+ core
clusters (e.g., BlueWaters), and to implement plugin algorithms (e.g., Kron
photometry).

8Another way of looking at this is that, functionally, there will be no fundamental
difference between Level 2 and 3 pipelines, except for the level of privileges and access to
software or hardware resources.

https://docushare.lsstcorp.org/docushare/dsweb/Get/LDM-152

8 ALGORITHMIC COMPONENTS 101

8 Algorithmic Components

8.1 Reference Catalog Construction: Princeton

We will need reference catalogs of various types for all sorts of calibration,
characterization and modeling efforts. We need to write down the process by
which we construct these catalogs in DRP.

8.2 Instrument Signature Removal: UW

AUTHOR: Merlin

• Mask defects and saturation

• Assembly

• Overscan

• Linearity

• Crosstalk

• Full frame corrections: Dark, Flats (includes fringing)

• Pixel level corrections: Brighter fatter, static pixel size effects

• Interpolation of defects and saturation

• CR rejection

• Generate snap difference

• Snap combination

8.2.1 AP: UW

AUTHOR: Simon

• Indicate steps to be done by camera

• call out other steps that are omitted/modified relative to the DRP
version

8 ALGORITHMIC COMPONENTS 102

8.2.2 DRP: Princeton

AUTHOR: Merlin

8.3 Artifact Detection

8.3.1 Single-Exposure Morphology: UW

8.3.1.1 Cosmic Ray Identification Cosmic rays will be identified using
a Laplacian edge detection algorithm [?]. Laplacian edge detection involves
convolving the image (I) with a smoothing function (f) tuned to the size of
the expected edge width.

L = 52f ∗ I

In the case of cosmic rays, this implies a very sharp edge. A natural choice is
a Gaussian with small σ. The discrete kernel chosen in [?] is

52 =
1

4

 0 −1 0
−1 4 −1
0 −1 0

 (1)

If just used on the native image, this filter would attenuate the signal from
CRs that effect multiple adjacent pixels. So, the image is subsampled by
some factor fs. Before downsampling to the native resolution, the negative
pixel values are clamped to zero. The resultant image in native pixelization
will be referred to as L+.

We construct a SNR image by dividing the Laplacian image by the noise
in the image and adjusting by the subsampling factor.

S =
L+

fsN

This CR detection image can be cleaned further by removing extended
sources using a median filter. Mn is the median over a n× n box.

S ′ = (S ∗M5)

If the PSF is well sampled, this SNR image can be used to detect the CRs by
simply drawing a threshold in SNR. If the PSF is undersampled, the author
uses the assumption that undersampled point sources are more symmetric
than CRs. By constructing a ”fine-structure” image, one can place a minimum

8 ALGORITHMIC COMPONENTS 103

contrast between the Laplacian image and the fine structure image that further
improves differentiation between CRs and point sources.

F = (M3 ∗ I)− [(M3 ∗ I) ∗M7]

So the final CR selection criteria are: S ′ > σlim and L+/F > Flim. The
tuning parameters are: fs the subsampling rate, σlim the SNR of the CRs in
the detection image, flim the minimum contrast relative to the ”fine-structure”
image. Assuming reasonable values for optical images, we will define a set of
default values.


Add to SFM section:
We can use something like L.A.COSMIC (or CRBLASTER) but if
it is too slow, we can fall back to the SDSS algorithm which does
a similar thing, but does no convolutions. We should also consider
why we do not use a Canny algorithm instead.



8.3.1.2 Optical ghosts We will have a set of optical ghost models. Some
of these will be models of stationary ghosts (e.g. pupil ghost). Others will
be a set of ghosts produced by point sources as a function of source position
and brightness. The structure of the stationary ghosts can be measured using
stacked, dithered star fields. The latter will likely be modeled using raytracing
tools or measured using projectors.

The stationary ghosts will need to be fit for since they will depend on
the total light through the pupil rather than on the brightness of a given
source and we do not expect to have the data necessary to compute the total
flux over the focalplane in a single thread in the alert production processing.
Using the fit to stationary models S and the predictions of the single source
ghosts, P , we will construct a ghost image

Ig = ΣiSi + σjPj

where i runs over the stationary ghost models and j runs over the sources
contributing to single source ghosts. We can then correct the image by:

I ′ = I − Ig

8 ALGORITHMIC COMPONENTS 104


Point source ghosting:
It may not be possible to do point source ghost correction in alert
production. We will know the model of the point source ghosts, but
we will not know the location of the bright sources in other chips.
Since point source ghosts can appear at significant separations, this
may be a source of spurious detections.



 dependence on PSF:
The CR rejection algorithm does not depend on the PSF of the
image. The single source ghosts may be a function of the PSF, but
not very strongly I don’t think.



8.3.2 Single-Exposure Aggregation: UW

8.3.2.1 Linear feature detection and removal Satellite trails, out of
focus airplanes, and meteors all cause long linear features in astronomical
images. The Hough Transform [?] is a common tool used in computer vison
applications to detect linear features. Linear features are parameterized by r,
the perpendicular distance to the line from the origin and θ, the the angle
of r with the x-axis. The (r, θ) space is binned and each pixel in the image
adds its flux to all the bins consistent with that pixel location. For bright
linear features, the bin at the true location of the feature will fill up because
more than one bright pixel is contributing to that location in parameter space.
After all pixels have been polled, the highest bins correspond to the linear
features in the image.

This works very well in high signal-to-noise images, but is very computa-
tionally expensive. It is also susceptible to bright point sources overwhelming
faint linear features.

An algorithm that takes care of both of these issues is presented in [?
]. We will use this as our baseline. First the image is rescaled to maximize
the contrast of faint linear features. Next an edge detection algorithm is run
on the image. The reference implementation uses a Canny algorithm [?].
This algorithm produces a set of edges that can then be mined for linear
features. They use a probababalistic Hough Transforms [?] to cut down on
computational costs. The probabalistic version limits the number of pixels
that vote. This results in a list of line segments. The segments are binned in

8 ALGORITHMIC COMPONENTS 105

angle and any sement that is outside some tolorance of the mode is culled.
This cleaned set of segments is fed to the masking algorithm.

The masking algorithm traverses each line segment found in the previous
step by selecting a subregion around the segment and flattening the subregion.
A weighted mean of the subregion is computed and any pixels above some
threshold are considered part of the trail and masked. The subregion is
moved along the segment until the end is reached. This is repeated for every
segment.



Outstanding questions:

• Is the rescaling to improve linear feature contrast necessary?

• Can we relax the requirement that the trail spans the image?

• Is the Canny algorithm step actually necessary, i.e. can we
run a Hough directly on the detected pixels?

• Can we use the fact that we have access to aircraft transpon-
ders to remove some plane trails?




Bickerton writeup:
Note that there is a writeup by Steve Bickerton on a different way to
modify the Hough Transform to find satelite trails and it has been
tried on HSC, but the paper is not complete. Thus, I didn’t use it
as the baseline here. The writeup is linked from DM-5872.



8.3.3 Snap Subtraction: UW

8.3.3.1 Improvements by using multiple snaps
Cosmic Rays We will need to still run some sort of topological identifier like
the one outlined above. This is because there will be real transients and we
still only want to pick out the sharp features as CRs. It will help to have less
crowding, so we should do CR rejection on the snap difference if we have it.
Ghosts Snap differences will not help with ghosting as the ghosts should
difference almost perfectly.
Linear features Snap differences will provide significant leverage for masking
linear features. Since each segment will appear in at most one snap we can
mask based on the pixels marked as detected in the difference images that

8 ALGORITHMIC COMPONENTS 106

are part of the trail. This will help in crowded regions. This technique will
require running some sort of trail detection algorithm, but the requirements
will be less stringent since the image will be so much less crowded.

8.3.4 Warped Image Comparison: Princeton?

AUTHOR: Jim

• Find more optical artifacts by looking at differences between warped
images (this is run during background matching).

• Find transient astronomical sources we don’t want to include in coadds.

8.4 Artifact Interpolation: Princeton?

AUTHOR: Jim

• Set mask planes for all artifacts.

• Eliminate small artifacts by interpolating them.

• Uses PSF model as interpolant.

8.5 Source Detection: Princeton

AUTHOR: Jim

• Detect above-threshold regions and peaks in direct or difference images.

• Needs to work on preconvolved and unconvolved images.

• May need multi-pass variants: detect bright objects first, then faint;
detect with approximate PSF, then improved.

8.6 Deblending

AUTHOR: Jim
For templates, try:

• symmetry ansatz with additional regularization

• simultaenous fit of galaxy models

8 ALGORITHMIC COMPONENTS 107

• spline-based models with regularization?

• (multi-coadd only) optimize color uniformity

Will be especially challenging in crowded fields, but it needs to work in
that regime as well.

8.6.1 Single Frame Deblending: Princeton

• Generate HeavyFootprint deblends using only a single image.

• May need to be able to work with approximate/guess PSF, even in
crowded fields, if we need to deblend before PSF estimation in DRP.

8.6.2 Multi-Coadd Deblending: Princeton

• Generate consistent HeavyFootprint deblends from coadds over multiple
bands and possibly epoch ranges.

8.7 Measurement: Princeton

AUTHOR: Jim

8.7.1 Drivers: Princeton

Measurement is run in several contexts, but always consists of running an
ordered list of algorithm plugins on either individual objects or families thereof.
Each context corresponds to different variant of the measurement driver code,
and has a different set of plugin algorithms and approaches to measuring
blended objects.

8.7.1.1 Single Frame Measurement: Measure a direct single-visit CCD
image, assuming deblend information already exists and can be used to replace
neighbors with noise (see 8.7.3.2).

Single Frame Measurement is run in both AP’s Single Frame Processing
pipeline) and DRP’s BootstrapImChar, RefineImChar, and FinalImChar.

The driver for Single Frame Measurement is passed an input/output
SourceCatalog and an Exposure to measure. Plugins take an input/output
SourceRecord and an Exposure containing only the object to be measured.

8 ALGORITHMIC COMPONENTS 108

Variants

Single Visit Multi-Coadd Difference Image Multi-Epoch Forced

A
lg

o
ri

th
m

s

Centroiders

Second-Moment Shapes

Aperture Photometry

Static Point Source Models

Petrosian Photometry

Kron Photometry

Galaxy Models

Moving Point Source Models

Trailed Point Source Models

Dipole Fitting

Spuriousness

D
e

b
le

n
d

in
g

Replace Neighbors

Simultaneous Fitting

Variant-Algorithm or Variant-Deblending combination is implemented and will be used

These photometry algorithms are also run in single-visit mode only to calculate their aperture corrections.

Both deblending approaches are implemented and compared; either or both may be used, depending on test results.

Deblending for these measurement variants will be implemented only if needed after testing with no deblending

Figure 6: Matrix showing combinations of measurement variants, algorithms,
and deblending approaches that will be implemented.

8 ALGORITHMIC COMPONENTS 109

8.7.1.2 Multi-Coadd Measurement: Simultaneously measure a suite
of coadds representing different bandpasses, epoch ranges, and flavors. This
is run only in DRP’s MeasureCoadds pipeline.

The driver for Multi-Coadd Measurement is passed an input/output
ObjectCatalog and a dict of Exposures to be measured. Plugins take an
input/output ObjectRecord and a dict of Exposures, each containing only
the object to be measured. Some plugins will also support simultanous
measurement of multiple objects, which requires they be provided the subset
of the ObjectCatalog to be measured and a dict of Exposures containing just
those objects.

8.7.1.3 Difference Image Measurement: Measure a difference image,
potentially using the associated direct image as well. Difference image mea-
surement is run in AP’s Alert Detection pipeline and DRP’s DiffIm pipeline.

The signatures of difference image measurement’s drivers and algorithms
are at least somewhat TBD; they will take at least a difference image Ex-
posure and a SourceCatalog/SourceRecord, but some plugins such as dipole
measurement may require access to a direct image as well. Because difference
imaging dramatically reduces blending, difference image measurement may
not require any approach to blended measurement (though any use of the
associated direct image would require deblending).

If preconvolution is used to construct difference images, but they are not
subsequently decorrelated, the algorithms run in difference image measurement
cannot be implemented in the same way as those run in other measurement
variants, and algorithms that cannot be expressed as a PSF-convolved model
fit (such as second-moment shapes and all aperture fluxes) either cannot be
implemented or require local decorrelation.

8.7.1.4 Multi-Epoch Measurement: Measure multiple direct images
simultaneously by fitting the same WCS-transformed, PSF-convolved model
to them. Blended objects in Multi-Epoch Measurement will be handled by at
least fitting them simutaneously (8.7.3.3), which may in turn require hybrid
galaxy/star models (8.7.3.4). These models may then be used as templates
for deblending and replace-with-noise (8.7.3.2) measurement if this improves
the results.

Because the memory and I/O requirements for multi-epoch measurement

8 ALGORITHMIC COMPONENTS 110

of a single object or blend family are substantial, we will not provide a driver
that accepts an ObjectCatalog and measures all objects within it; instead, the
pipeline will submit individual family-level jobs directly to the orchestration
layer. The multi-epoch measurement driver will thus just operate on one blend
family at a time, and manage blending while executing its plugin algorithms.

Multi-epoch measurement for DRP only includes two plugin algorithms,
so it is tempting to simply hard-code these into the driver itself, but this
driver will also need to support new plugins in Level 3.

Multi-epoch measurement will also be responsible for actually performing
forced photometry on direct images, which it can do by holding non-amplitude
parameters for moving point-source models fixed and adding a new amplitude
parameter for each observation.

8.7.1.5 Forced Measurement: Measure photometry on an image using
positions and shapes from an existing catalog.

In the baseline plan, we assume that forced measurement will only be
run on difference images; while forced photometry on direct images will
also be performed in DRP, this will be done in the course of multi-epoch
measurement.

Because difference imaging reduces blending substantially, forced measure-
ment may not require any special handling of blends. If it does, simultaneous
fitting (with point-source models) should be sufficient.

The driver for Forced Measurement is passed an input/output Source-
Catalog, an additional input ReferenceCatalog, and an Exposure to measure.
Plugins take an input/output SourceRecord, an input ReferenceRecord and
an Exposure. If simultaneous fitting is needed to measure blends, plugins
will instead receive subsets of the catalogs passed to the driver instead of
individual records.

Forced measurement is used by the DRP ForcedPhotometry pipeline and
numerous pipelines in AP.

[
TODO:
Add references to specific AP pipelines that will use forced measure-
ment.

]

8.7.2 Algorithms: Princeton

8.7.2.1 Centroids

8 ALGORITHMIC COMPONENTS 111

• should be equivalent to PSF model fit for stars

• use larger weight function (TBD) for extended objects

• need variant that doesn’t require a PSF model (or can work with a poor
guess) to run before PSF estimation.

8.7.2.2 Pixel Flag Aggregation

• Compute summary statistics of masked pixels in the neighborhood of
the source/object.

8.7.2.3 Second-Moment Shapes

• probably adaptive elliptical Gaussian weights, with fall back to un-
weighted, PSF-weighted, or some fixed Gaussian

• add regularization for unresolved objects - avoid crazy ellipticities for
objects much smaller than PSF

• Should also compute moments of PSF model.

8.7.2.4 Aperture Photometry

• Aperture fluxes are computed by summing the total flux within an
elliptical region defined on the image.

• Aperture fluxes are computed at a series of logarithmically spaced
aperture sizes. Per the DPDD, the total number of apertures will vary
depending on the size of the source.

• When computing fluxes for small apertures—for configurable values of
“small”–we use sinc interpolation [5]. For large apertures, we use a naive
summation of pixel values.

• Needs to be more clever about measuring bright, saturated stars - maybe
measure each annulus in sectors, as in SDSS. Can then use differences
between sectors to measure uncertainties, but care is required when
aperture ellipticitiy doens’t match source ellipticity.

https://docushare.lsstcorp.org/docushare/dsweb/Get/LSE-163

8 ALGORITHMIC COMPONENTS 112

• May need to change ellipticity as a function of aperture radius (tricky
to determine any kind of ellipticity robustly).

• If run before PSF estimation, will need a variant that does not rely on
the PSF model to choose aperture size/ellipticity.

8.7.2.5 Static Point Source Photometry

• Fit PSF model for flux only (hold center fixed at centroid or reference
value)

• Doesn’t use per-pixel variances for flux measurement, but might also
provide measurement with per-pixel variances (for diagnostics?)

8.7.2.6 Kron Photometry

• Compute Kron radius (hard to make this robust)

• Compute flux in elliptical aperture at Kron radius.

8.7.2.7 Petrosian Photometry

• Compute Petrosian radius.

• Requires taut splines and more robust measurement of standard elliptical
aperture suite.

• Compute flux in elliptical aperture at multiple Petrosian radius.

8.7.2.8 Galaxy Models

• Some sort of bulge+disk model. Lots of need for experimentation.

• Will Monte Carlo sample in MultiFit (and maybe on coadds, too, if
that helps).

• May also fit to PSF-matched coadds for consistent colors.

• Will need to support simultaneous fitting (and sampling).

• Hybrid model candidate

8 ALGORITHMIC COMPONENTS 113

8.7.2.9 Moving Point Source Models

• Fit point source with flux, centroid, parallax, and proper motion pa-
rameters.

• May need to support simultaneous fitting.

• Might want to sample this too, at least if we fit it simultaneously with
sampled galaxy models.

• Hybrid model candidate

8.7.2.10 Trailed Point Source Models

• Fit PSF convolved with line segment to individual images

8.7.2.11 Dipole Models

• Fit PSF dipole for separation and flux to a combination of difference
image and direct image.

• Deblending on direct image very problematic.

Arising primarily due to slight astrometric alignment or PSF matching
errors between the two images, or effects such as differential chromatic aberra-
tion, flux “dipoles” are a common artifact often observed in image differences.
These dipoles will lead to false detections of transients unless correctly iden-
tified and eliminated. Importantly, dipoles will also be observed in image
differences in which a source as moved less than the width of the PSF. Such
objects must be correctly identified and measured as dipoles in order to obtain
accurate fluxes and positions of these objects.

Putative dipoles in image differences are identified as a positive and nega-
tive source whose footprints overlap by at least one pixel. These overlapping
footprints are merged, and only the sources containing one and only one
positive and negative merged footprint are passed to the dipole modeling task.
There is a documented degeneracy (http://dmtn-007.lsst.io) between
dipole separation and flux, such that dipoles with closely-separated lobes
of high flux are statistically indistinguishable from ones with low flux and
wider separations. We remove this degeneracy by using the pre-subtraction
images (i.e., the warped, PSF-matched template image and the pre-convolved

http://dmtn-007.lsst.io

8 ALGORITHMIC COMPONENTS 114

science image) to constrain the lobe positions (specifically, to constrain the
centroid of the positive lobe in the science image and of the negative lobe in
the template image). This is done by first fitting and subtracting a second-
order 2-D polynomial to the background within a subimage surrounding
each lobe footprint in the pre-subtraction images to remove any flux from
background galaxies (we assume that this gradient, if it exists, is identical in
both pre-subtraction images). Then, a dipole model is fit simultaneously to
the background-subtracted pre-subtraction images and the image difference.

The dipole model consists of positive and negative instances of the PSF in
the difference image at the dipole’s location. The six dipole model parameters
(positive and negative lobe centroids and fluxes) are estimated using non-
linear weighted least-squares minimization (we currently use the Levenberg-
Marquardt minimization algorithm). The resulting reduced χ2 and signal-to-
noise estimates provide a measure by which the source(s) may be classified as
a dipole.

We have tested the described dipole measurement algorithm on simulated
dipoles with a variety of fluxes, separations, background gradients, and signal-
to-noise. Including the pre-subtraction image data clearly improves the
accuracy of the measured fluxes and centroids. We have yet to thoroughly
assess the dipole measurement algorithm performance on crowded stellar fields.
Such crowded fields may confuse the parameter estimates (both centroids
and/or fluxes) when using the pre-subtraction images to constrain the fitting
procedure, and in such situations, we may have to adjust the prior constraint
which they impose.

Note that deblending dipole sources is a complicated process and we do
not intend on implementing such an algorithm. As with all fitting algorithms,
speed may be a concern. We will optimize the dipole measurement for speed.

8.7.2.12 Spuriousness

• Some per-source measure of likelhood the detection is junk (in a differ-
ence image).

• May use machine learning on other measurements or pixels.

• May be augmented by spuriouness measures that aren’t purely per-
source.

8 ALGORITHMIC COMPONENTS 115

8.7.3 Blended Measurement: UW

• Integrate text from blended-measurement doc here.

8.7.3.1 Deblend Template Projection

8.7.3.2 Neighbor Noise Replacement

8.7.3.3 Simultaneous Fitting

8.7.3.4 Hybrid Models In many areas we will need to represent spatial
models. This will include models fit to sparse and non-uniformly sampled
data. We will support fitting Chebyshev polynomials and splines. We will
also support regression techniques like Gaussian Processes.

8.8 Background Estimation: UW?

Background estimation will be done on the largest scale feasible first. In the
case of Alert Production, this may be on the size of a chip. In DRP, we expect
this to be on a full focalplane. An initial low order estimate will be made on
a large scale. Each chip will be divided into subregions. For each subregion, a
robust average of the non-masked pixels will be computed. All values for all
chips will be fit by an appropriate function (see §8.7.3.4). This will provide
a low order background estimation in focal plance coordinates. Note that
this can only be done if the instrument signature removal is very high fidelity.
Any sharp discontinuity could cause problems with fitting a smooth function.

A higher order background model can be computed per chip. First, the
low order background is subtracted from the image. The non-masked pixels
will again be binned on a finer grid avoiding bright objects. The median in
each bin is fit by an appropriate function. In practice, this process will likely
be iterative.

In the case of Alert Production, there will be no full focalplane model
since we expect to process only a single chip in each thread. In this case,
we constrain the background with the available un-masked pixels without
removing a global background first. Note that image differencing is still
possible even in the scenario where there are no unmasked pixels in the
science image. The background can be modeled as a part of the PSF matching
process. We will want to do background modeling and subtraction in Alert

8 ALGORITHMIC COMPONENTS 116

Production when possible because we will want to do calibrated photometry.
Even though these measurements are not persisted for science use, they will
be very useful for debugging and QA.

If there are so few un-masked pixels in the entire focalplane that even a
low order global background is impossible to model, background modeling
may need to be iterated with a procedure that models and subtracts stars
(for example, see the BootstrapImChar pipeline in DRP).



Crowded fields and composition:
Requirements include working in crowded fields. I think estimating a
full focalplane model is the best we can do. If there are no unmasked
pixels in the entire FoV, I don’t think there is much we can do.
I didn’t explicitly talk about composition of background models,
but this takes that into account by allowing a global model to be
subtracted from the single chip image before a higher order model
is fit.



8.9 Matched Background Estimation: Princeton?

A variant of Background Estimation for use on difference images produced
in Background Matching. This will be able to operate on full visit scales
with much less concern for oversubtracting bright objects, which may allow it
to use qualitatively different algorithms. It may also be able to use models
specifically designed to subtract specific ghosts or stray light patterns.

8.10 Build Background Reference

AUTHOR: Simon

8.10.1 Patch Level: Princeton

Background-matching each CoaddTempExp to a reference exposure performs
comparably to fitting the offsets to the N(N-1)/2 difference images, how-
ever the co-add quality will depend on the quality of the reference image.
Choosing a reference image on a per-patch basis is as simple as choosing the
CoaddTempExp that maximizes coverage and is the highest weighted compo-
nent in the chosen weighting scheme: e.g. minimum variance, optimum point
source SNR.

8 ALGORITHMIC COMPONENTS 117

Coverage is defined as the fraction of non-NaN pixels in the CoaddTempExp.
NaN pixels arise in CoaddTempExps because of gaps between the chips and
edges of the visit focal planes. The camera design specifications indicate a 90%
fill factor, and thus approximately 10% of pixels will be NaN due to chip gaps.
The SNR of the background can be estimated from either the CoaddTempExps
themselves, using the variance plane of pixels without the source detection
bit mask flagged, or from calibration statistics such as the zero point (a proxy
for transparency). In the limiting case that all CoaddTempExps have the same
coverage, finding the best reference image reduces to the problem of weighting
epochs in co-addition.

For example, the reference image that minimizes the variance in the co-
add is the minimum variance CoaddTempExp, and the reference image that
maximizes SNR in coadd point source measurements is the CoaddTempExp

with the maximum T 2
i /FWHM2

iσ
2
i , where Ti is the normalization factor

necessary to put the input CoaddTempExps on the same photometric system
(a proxy for the atmospheric transparency), and σ2

i the average variance of
the pre-scaled exposure. By combining one of these statistics with coverage,
we can construct an objective/cost function that relates the importance of
coverage and sky-background, and can select a visit that minimizes that
quantity objective function.

8.10.2 Tract Level: Princeton

Constructing reference images for tract-sized co-adds follows the same princi-
ple, but requires maximizing the SNR/coverage of a large mosaic constructed
from multiple visits. Algorithms for mosaicking partially overlapping images
have been well established [e.g. ? ?]. By mosaicking visits, applying additive
scalar or sloping offsets to calexps, we can generate a tract-sized reference
image. Algorithms for selecting visits to construct these fall on a spectrum
of computational expense. On the less expensive side is a greedy algorithm
which starts with a “best” (as defined above) visit chosen at the center of
the tract. Visits can be chosen, scaled, and added one by one in the vicinity,
moving outwards. Another option is to choose a small set of visits that
completely cover a tract without gaps, which can b cast as a constrained
convex optimization problem9, and mosaic them using standard mosaicking
techniques. Finally, the most expensive option would use all the visits to

9probably

8 ALGORITHMIC COMPONENTS 118

simultaneously tie the visits together using all overlaps while background
matching.

• Given multiple overlapping visit images (already warped to a common
coordinate system), synthesize a continuous single-epoch image that
can be used as a reference for background matching.

8.11 PSF Estimation – Not sure how to divide this up.

8.11.1 Single CCD PSF Estimation: UW

Single CCD PSF estimation needs to be run in both Alert Production and
in in Data Release Processing. In Alert Production it will be the final PSF
model for both direct and difference image measurement. In Data Release
Processing, it will be used as an initial bootstrapping step to start off image
characterization. We do not intend to include chromatic effects in the PSF at
the single CCD estimation phase.

The first step is to select a set of suitable stars to use as PSF exemplars.
This can be done by finding clusters in second moment space. In production,
we expect that an external catalog with PSF candidates that have been show
to be non-varying and isolated will produce better results.

Once a set of candidate stars is selected each star is fit by a set of
appropriate basis functions: e.g. shapelets. The PSF is approximated by

P = ΣncnΨn

where Ψn is the nth basis function, and cn is the coefficient for that basis
function. We can solve for the coefficients in the least squares sense using
a QR decomposition or similar technique. We then have an estimate of the
PSF at several locations on the chip. For each of the coefficients we can fit
2D Chebyshev polynomials to each coefficient to model the spatial variation
in each component (see 8.7.3.4). By interpolating the fit coefficients, we can
derive an estimate of the PSF at any point in the chip.

The order of the spatial model cannot excede number of PSF exemplars
in the frame. If there is only a single PSF candidate star, we will assume the
PSF is constant across the CCD. In the case of no PSF candidate stars, we
will assume a double Gaussian PSF with width set by observation metadata:
e.g. FWHM from the guiding system.

8 ALGORITHMIC COMPONENTS 119


Do we need something more complex?:
We can get arbitrarily complex, but I don’t thinkn we need a more
complex system in the baseline until we show this won’t work. Some
have considered using Gaussian process regression for this, but I
don’t know that anyone has formalized that.



8.12 Wavefront Sensor PSF Estimation: UW

AUTHOR: Jim

• Build an approximate PSF model using only the very brightest stars in
the wavefront sensors. Because WF sensors are out-of-focus, these stars
may be saturated on science CCDs.

• Model can have very few degrees of freedom (very simple optical model
+ elliptical Moffat/Double-Gaussian?)

• Only needs to be good enough to bootstrap PSF model well enough to
bootstrap processing of science images (but it needs to work in crowded
fields, too).

• Being able to go to brighter magnitudes may be important in crowded
fields because the shape of the luminosity function may make it easier
to find stars with (relatively) significant neighbors.

• Assumed to be at least mostly contributed by Systems Engineering.

8.12.1 Full Visit PSF Estimation: Princeton

AUTHOR: Jim

• Decompose PSF into optical + atmosphere (and maybe sensor).

• Constrain model with stars, telemetry, and wavefront data.

• Wavelength-dependent.

• Used in *ImChar in DRP.

• Must include some approach to dealing with wings of bright stars (not
trivial)

8 ALGORITHMIC COMPONENTS 120

8.13 Aperture Correction: Princeton

AUTHOR: Jim

• Measure curves of growth from bright stars (visit-level, at least in DRP)

• Correct various flux measurements to infinite (CCD-level). Stellar
measurements are easy, galaxies are hard (impossible to do formally
correctly?).

• Probably want sequence of apertures to agree asymptotically?

• Propagate uncertainty in aperture correction to corrected fluxes; covari-
ance is tricky.

8.14 Astrometric Fitting

8.14.1 Single CCD: UW

Used by AP, probably (RHL worries we might need full-visit)
AP will need to do reasonably good astrometeric calibration on single

frames in order to do the relative warping between the template and science
images. We have seen that the kernel matching algorithm can take out bulk
astrometric errors up to a significan fraction of a pixel. However, we would like
to avoid making the kernel matching deal with astrometric errors. Astrometric
errors between the science and template coordinate systems should be less
than 15mas. We will use the internal reference catalog used in DRP as the
reference catalog. This will be based on astrometry from an external source
and will be extended using high quality measurements on coadds from DRP.

We can project the per-chip coordinates into a flat (Gnomonic) projection
in the focalplane. This will take out the bulk of the optical distortion. Next,
we will use a matching algorithm like that outlined in [?]. Once we match, a
2D polynomial solution will be fit to minimize the residual.

[
Dependency:
This introduces a dependency on DRP’s internal reference catalog
not capture elsewhere.

]

8 ALGORITHMIC COMPONENTS 121

8.14.2 Single Visit: UW

Full visit astrometric fitting will be done as a bootstrapping step toward
higher quality calibration in DRP. All measurements in the visit will be
projected to a tangent plane, taking into account all knowledge of the sensor
arrangement and optics. The reference catalog (likely the DRP reference
catalog) will be projected to the same tangent plane.

Sources will be matched, again using a [?] like algorithm. Once the
reference and observations are matched, a multi-component WCS will be fit.
We expect the components will be related to residuals on the optical model
and will included a component to account for the Von Karman turbulence.

8.14.3 Joint Multi-Visit: UW

In the case where there are multiple visits overlapping the same part of the
sky, e.g. a patch, we can leverage multiple realizations to beat down the
random contribution of the atmosphere to get a better estimate of the optical
model and the atmospheric contribution per visit.

The catalogs are stacked and matched using a multi-matching algorithm
like OPTICS. At this point, the measurements can be matched to an external
catalog for the purposes of absolute astrometry. With all measurements in
hand, a multi-component WCS is fit to all measurements at the same time
on order to minimize the residual from the mean position for each object.

Joint astrometric fitting must be able to work both with and without an
external reference catalog (while only producing relative results in the latter
case, of course).

8.15 Photometric Fitting

8.15.1 Single CCD (for AP): UW

• Match to photometric calibration reference catalog

• Calculate single zeropoint using available color terms

8.15.2 Single Visit: UW

• Fit zeropoint (and some spatial variation for clouds) to all CCDs simul-
taneously after matching to reference catalog.

8 ALGORITHMIC COMPONENTS 122

• Need for chromatic dependence unclear; probably driven by AP.

• Might be possible to use a “nightly zeropoint” if calibration fields are
taken (e.g., during twilight)

8.15.3 Joint Multi-Visit: UW?

For DRP, all the observations can be combined in the so-called ubercal
procedure to generate the best possible measurement of the relative flux of
each source.

• Derive SEDs for calibration stars from colors and reference catalog
classifications.

• Utilize additional information from wavelength dependent photometric
calibration built by calibration products production to convert observed
flux to a flux through a standard atmosphere.

• Fit zeropoint and possibly perturbations to all CCDs on multiple visits
simultaneously after matching to reference catalog.

Because the number of stars gets ridiculously large, it can be useful to
solve different overlapping regions of the sky in parallel. Once all the regions
converge, you can run the same ubercal matrix solution to tie the patches
together. The fist step is to solve:

mij = mi + zj (2)

where mij is an observed magnitude of star with true magnitude mi on
observation j. While it is possible to include more terms (say, fit out flat-
fielding errors at the same time), more terms makes it much harder to
solve in parallel. Additional terms also make it easy to make the problem
degenerate and it can slow the ubercal algorithm down rapidly. Naively,
solving Equation 2 would involve simply computing the psudo-inverse of the
sparse mij matrix. Unfortunately, the inverse of a large sparse matrix is a
large dense matrix. Thus one must use iterative solvers such as the LSQR
algorithm (a conjugate gradient-type solver) to find the best-fitting values of
mi and zj.

This method leaves a “floating zeropoint” in the solution (if you add X
to all the mi’s, and -X to all the zj’s the solution is the same). If one solves

8 ALGORITHMIC COMPONENTS 123

regions of the sky independently, then the floating zeropoints of each region
(say a HEALpixel) need to be matched:

pij = pi +HPj (3)

One open issue is that it’s not clear what uncertainties to put in for the
different pij’s (unlike the observed magnitudes where it’s relatively easy to
calculate a reasonable uncertainty). One must also come up with a method
for computing the uncertainties on the returned best-fit parameters.

After solving for all the magnitudes, and merging all the patch zeropoints,
there’s still the final floating zeropoint (in each filter) that needs to be removed.
One possibility is to use spectrophotometric White Dwarf standards to set
the overall photometric zeropoint since they have spectra that should be
theoretically calculated to millimag precision. There’s also speculation that
GAIA BP/RP spectra could provide a good way to do the flux calibration.

Joint photometric fitting must be able to work both with and without an
external reference catalog (while only producing relative results in the latter
case, of course).

8.16 Retrieve Diffim Template for a Visit: UW

In difference imaging a major contributor to the quality of the difference
image is the choice of template. We expect that the DRP template generation
algorithm will be quite complex. It will potentially involve synthesizing
multiple monochromatic templates that will be used to model the effects of
DCR.

Ideally, the retrieval will be to select the correct bounding box from
the correct master template for the current observation. In the simplest
implementation, we would build reference templates on a grid of hour angle
and positions. If we need a more complicated algorithm for generating
reference templates, we expect the template generation algorithm will provide
an algorithm to interpret the templates.

8.17 PSF Matching

The essence of image subtraction is to astrometrically register the science
image S(x, y) and template image T (x, y), and then match their point spread
functions (PSFs) of so that they may be subtracted pixel by pixel. The

8 ALGORITHMIC COMPONENTS 124

PSFs are the time–averaged transfer functions of a point source through the
Earth’s atmosphere, telescope optics, and into the silicon of the detector
before being read out. We assume that the science image can be modeled as
a convolution of the template image by a PSF–matching kernel κ(u, v;x, y),
i.e., S = κ⊗ T . (Indices u, v indicate that the kernel itself is a 2–dimensional
function, which varies as a function of position x, y in the image; during
convolution and correlation there is an implicit summation over u, v.) Then
the difference image, upon which new or variable sources are detected, is
given by D = S − (κ⊗ T).

8.17.1 Image Subtraction: UW

• Match template image to science image, as in Alert Production and
DRP Difference Image processing.

• Includes identifying sources to use to determine matching kernel, fitting
the kernel, and convolving by it.

The current implementation of the PSF matching algorithm is summarized
in detail by Becker, et al. (2013) (http://ls.st/x9f). We model the PSF–
matching kernel by decomposing it into a set of basis functions κ(u, v) =∑

i aiκi(u, v) [29], where the coefficients are determined via ordinary least-
squares estimation:

Ci ≡ (κi ⊗ T); (4)

bi =
∑
x,y

Ci(x, y)S(x, y)

σ2(x, y)
;

Mij =
∑
x,y

Ci(x, y)Cj(x, y)

σ2(x, y)
;

ai = M−1
ij bj.

σ2(x, y) is the per–pixel variance stored in the variance plane of each LSST
exposure. To generate a spatially varying model for the kernel, we further
decompose the relative weights of the basis coefficients ai into spatially-varying
low-order polynomials, i.e. κ(u, v;x, y) =

∑
i ai(x, y)κi(u, v). We also allow

for a spatially-varying differential background between the two images b(x, y)
that may be fit for using a low–order polynomial [29, 30]. The image difference
is then D(x, y) = S(x, y)− T (x, y)⊗ κ(u, v;x, y)− b(x, y). There are many

http://ls.st/x9f

8 ALGORITHMIC COMPONENTS 125

choices of baisis functions, e.g. regularized delta functions. However, the
basic algoirthm remains unchanged.

The basis functions κi(u, v) are a degree of freedom in this problem.
Following [29], we use a set of nGauss = 3 Gaussians, each with a different
width σi, and each modified by a Laguerre polynomial to a given order (see
below). Following more recent studies studies [e.g. 31], we parameterize
these different Gaussian widths via a single ratio β, such that σi+1 = β × σi
with β = 2.0. (We note that all constants are defined by Config variables
and may be adjusted on a per-use basis). We set the overall scale for
the σ by noting that, under the assumption that the PSFs of the images
are Gaussian (σS for the science image and σT for the template image),
the σκ of the matching kernel should be simply σ2

κ = σ2
S − σ2

T . We use
this canonical width for the central Gaussian in the basis sequences (i.e.,
σi=2 ≡ σκ when using three Gaussians bases). Each of the three default
kernel basis functions are modified by Laguerre polynomials up to order
degGauss = [4, 2, 2], respectively. This results in a total number of (non-
spatially varying) bases of

∑nGauss
i (degGaussi + 1)× (degGaussi + 2)/2, or

27 given the aforementioned defaults.
A spatially-invariant matching kernel κ(u, v) is determined separately for

image substamps centered on multiple kernel candidates across the image.
The kernel candidates are selected using the DiaCatalogSourceSelector to
query the appropriate reference catalog for appropriate sources to use for
PSF matching. This selector allows the user to specify the brightness and
color range of the objects, toggle star or galaxy selection, and to include
variable objects or not. Sources are vetted for signal-to-noise and masked
pixels (in both the template and science image). The matching (spatially-
invariant) kernel models κj(u, v), determined for each kernel candidate j as
described above, are examined and filtered by various quality measures. The
resulting ensemble of filtered kernel models is used to constrain the spatially-
varying kernel model κ(u, v;x, y) by fitting the spatially-varying basis kernel
coefficients ai(x, y) with a N th-order 2-dimensional Chebyshev polynomial.
This results in the final full spatial solution κ(u, v;x, y) =

∑
i ai(x, y)κi(u, v),

which may be evaluated at each location (x, y) in the image for convolution.
Detection on the difference image occurs through correlation of D(x, y)

with the science image’s PSF, yielding optimally filtered detection image
D′(x, y) = D(x, y) ◦ PSFS(u, v;x, y) where ◦ denotes correlation (currently
the DM stack uses convolution instead of correlation). The values of the
pixels in D′(x, y) provide a maximum likelihood estimate of there being a

8 ALGORITHMIC COMPONENTS 126

point source at that position. Detection occurs by simply finding pixels
that are more than N × σ above the square root of the per–pixel variance.
Alternatively, the science image may be pre-convolved with a kernel similar
to its PSF, in which case the resulting difference image D(x, y) is already
filtered for detection. This latter option has the additional advantage that
it help us avoid requiring em deconvolution of the template image, in cases
when the template has a wider PSF than the science image.

8.17.2 PSF Homogenization for Coaddition: Princeton

• Match science image to predetermined analytic PSF, as in PSF-matched
coaddition.

In PSF-matched coaddition, input images are convolved by a kernel that
matches their PSF to a predefined constant PSF before they are combined.
This so-called “model PSF matching” uses the PSF-matching algorithm
described in the previous section to match the PSF model from an exposure to
a pre-determined template (e.g., a constant-across-the-sky double Gaussian)
PSF model. For this task, we realize each PSF model into an exposure-sized
grid, and then utilize those as kernel candidates as input for the PSF matching
algorithm described above.

8.18 Image Warping

AUTHOR: Jim

8.18.1 Oversampled Images: UW

Oversampled images are warped to a new WCS and resampled using a two
dimensional Lancsoz kernel of configurable order. The baselined default order
is 3.

The one dimensional Lancsoz kernel of order a is defined as

L(x) =

{
sinc(x) sinc(x/a) if − a < x < a

0 otherwise.

The two dimensional Lancsoz kernel is L(x, y) = L(x) · L(y).
For each integer pixel position in the remapped image, the associated pixel

position in the source image is determined using the source and destination

8 ALGORITHMIC COMPONENTS 127

WCS. The warping kernel is then applied to the source image to compute
the remapped pixel value. A flux conservation factor is applied based on the
relative sizes of the pixel in the source and destination WCS.

For performance reasons, it is desirable to reduce the total number of
WCS calculations. It is therefore acceptable to perform the mapping between
source and destination images over a regular grid and linearly interpolate
between grid points, rather than mapping every pixel independently.

Since chromaticity is accounted for in the PSF rather than the WCS, no
special account is taken of color when warping.

 Note:
The above describes the current warping implementation in afw.
We should identify deficiencies with the current implementation to
establish resource requirements.



8.18.2 Undersampled Images: UW?

• Can use PSF model as interpolant if we also want to convolve with PSF
(as in likelihood coadds). Otherwise impossible?

8.18.3 Irregularly-Sampled Images: UW?

• Approximate procedure for fixing small-scale distortions in pixel grid.

8.19 Image Coaddition: Princeton

AUTHOR: Jim

• Must be able to do generalized outlier rejection, using histograms of
detection masks produced on difference images.

• Needs to propagate full uncertainty somehow.

• Needs to propagate PSFs.

• Needs to propagate wavelength-dependent photometric calibration.

• May need to propagate larger-scale per-exposure masks to get right
PSF model or other coadded quantities.

8 ALGORITHMIC COMPONENTS 128

• Should be capable of combining coadds from different bands and/or
epoch ranges ranges as well as combining individual exposures.

• Also needs to support combining snaps

8.20 DCR-Corrected Template Generation: UW

Refraction by the Earth’s atmosphere results in a dispersion of an astronomical
image along the “parallactic angle”. This amplitude of this dispersion depends
on the spectral energy distribution (SED) of the source and the refractive
index of the atmosphere. Differential chromatic refraction (DCR) refers to
the SED dependent refraction within a given photometric passband. For
the airmass range of the LSST and its filter complement the amplitude of
the DCR could be up to 1.1 arcsec in the u band and 0.8 arcsec in the g
band. Image subtraction templates that do not account for DCR will result
in dipoles in the subtracted images.

The baseline approach for minimizing DCR induced dipoles in image
differences is to selected coadded templates that are close in airmass . This
will identify three airmass bins (XXX where is this defined) from which PSF
matched coadds will be generated.

Given the sensitivity of the number of false positives to the astrometric
accuracy of the registration of images and the dependence of this astrometric
accuracy on DCR we plan to define an interpolation scheme for generating
DCR corrected templates.

8.20.1 Refraction from the atmosphere

Refraction is dependent on the local index of refraction of air n0(λ) at the
observatory and, as a function of wavelength is given by,

R(λ) = r0n0(λ) sin z0

∫ n0(λ)

1

dn

n
(
r2n2 − r20n0(λ)2 sin2 z0

)1/2
' κ(n0(λ)− 1)(1− β) tan z0 − κ(1− n0(λ))

(
β − n0(λ)− 1

2

)
tan3 z0

(5)

with z0 the zenith distance.

8 ALGORITHMIC COMPONENTS 129

8.20.2 Generating a DCR corrected template

Given a set of observed images, O(x, z), at an airmass of z, and assuming
that we know the wavelength dependence of the refraction, we can model
the corresponding image at the zenith (or any other airmass), I(x, 0). For
simplicity, we will consider only a single row of a sensor as comprising an
image, that the direction of the DCR is aligned along the row, and that the
PSF is constant between images.

The impact of DCR is to move flux between pixels as a function of airmass
and wavelength. Refraction, R(λ, z), can be treated as a shift operator
or a convolution, D(λ, z), and is known given the refractive index of the
atmosphere. If we consider that the zenith image can be decomposed into a
linear sum of images as a function of wavelength, i.e.,

I(x′, 0) =
∑
λ

I(x′, 0, λ) (6)

then the observed set of images are given by,

O(x, z) =
∑
λ

I(x′, λ)⊗D(λ, z) (7)

Solving for I(x, λ) becomes a regression problem that can be solved for
by minimizing

χ2 =
∑
x

(O(x)−
∑
λ

I(x′, λ)⊗D(λ))2 (8)

There are a number of possible approaches for finding the “zenith” image.
The convolution can be written as a transfer matrix, T , where the elements
of the matrix correspond to the fraction of pixel x′ that maps to pixel x in
the observed image. Under this mapping, we can write the linear equations
as TI = O and by inverting the matrix solve for I.

While, T , is clearly sparse the number of terms that must be solved for
given the number of wavelengths λ that I is decomposed into, means that we
require a heavily regularized regression. The initial implementation for the
DCR corrected template will invert the linear equations assuming smoothness
between adjacent pixels and as a function of wavelength, by adopting first and
second order finite difference matrices (ref nate). A prototype implementation
has been demonstrated for the 1D case.

A second approach will be to forward model the problem by iteratively
updating I based on a set of observations O.

8 ALGORITHMIC COMPONENTS 130

For each approach the number of wavelength bins that I(x) can be decom-
posed into will depend on the number of observations at different airmass. The
assumption of a constant PSF will clearly not hold for the LSST observations
but can be incorporated within the convolution Equation 7 or addressed
through a separable, wavelength dependent, PSF convolution. The robustness
of these techniques will need to be evaluated for low signal-to-noise sources
and in the presence of scattered light and artifacts.

8.21 Image Decorrelation

8.21.1 Difference Image Decorrelation: UW

In situations where the signal-to-noise in the template image is not insignificant
(e.g., when the template is constructed by co-addition of a small number of
exposures), the resulting image difference will contain autocorrelated noise
arising from the convolution of the template with the PSF matching kernel
prior to subtraction. This will result in inaccurate estimates of thresholds for
diaSource detection if the (potentially spatially-varying) covariances in the
image difference are not properly accounted for.

A viable alternative in the case of noisy template images is to construct
a difference image with a flat noise spectrum, like the original input images
[32, 33]. This simply involves multiplying the image difference by a term
which removes its frequency dependence,

D(k) = [S(k)− κ(k)T (k)]

√
σ2
S + σ2

T

σ2
S + κ2(k)σ2

T

, (9)

where S is the science image, T is the template, σ2
S and σ2

T are their respective
variances, and κ is the PSF-matching kernel which, when convolved with
the template, matches the PSF of the template to that of the science image.
κ may be solved for (in real space) as described in Section 8.17. Then the
multiplication by the square-root term in Equation 9 may be interpreted as
applying a post-image-differencing convolution kernel which “removes” the
pixel-wise correlation which was added by convolution of the template by
the PSF-matching kernel. The PSF of the resulting decorrelated difference
image φD then equals the PSF of the science image φS, convolved with the
post-differencing kernel:

8 ALGORITHMIC COMPONENTS 131

φD(k) = φS(k)

√
σ2
S + σ2

T

σ2
S + κ2(k)σ2

T

. (10)

We are investigating this approach and have shown that, for idealized
situations, the resulting image differences are statistically indistinguishable
from those generated using the “Proper image subtraction” technique proposed
by [33].

Issues arising from complications often seen in real-world data such
as spatially-varying PSFs and/or poorly-evaluated matching kernels, spa-
tially variable backgrounds and/or noise, and possibly non-Gaussian or het-
eroschedastic noise need to be further evaluated. Such tests are currently
underway on simulated and real data. These tests could highlight the advan-
tages of the method proposed here over the proposal of [33], including: no
requirement for accurate measurement of the PSFs of the science or template
images, and thus the ability to to account for errors in astrometric alignment
and to directly model spatially varying differential PSFs.

8.21.2 Coadd Decorrelation: Princeton

AUTHOR: Jim

• Fourier-space/iterative deconvolution of likelihood coadds, as in DMTN-
15.

• Need to test with small-scale research before committing to this ap-
proach.

8.22 Star/Galaxy Classification: Princeton?

AUTHOR: Jim

8.22.1 Single Frame S/G

• Extendedness or trace radius difference that classifies sources based on
single frame measurements that can utilize the PSF model. Used to
select single-frame calibration stars, and probably aperture correction
stars.

8 ALGORITHMIC COMPONENTS 132

8.22.2 Multi-Source S/G

• Aggregate of single-visit S/G post-PSF numbers in jointcal.

8.22.3 Object Classification

• Best classification derived from multifit and possibly variability.

8.23 Variability Characterization: UW

Following the DPDD, lightcurve variability is characterized by providing a
series of numeric summary ‘features’ derived from the lightcurve. The DPDD
baselines an approach based on Richards et al. [24], with the caveat that
ongoing work in time domain astronomy may change the definition, but not
the number or type, of features being provided.

Richards et al. define two classes of features: those designed to characterize
variability which is periodic, and those for which the period, if any, is not
important. We address both below.

All of these metrics are calculated for both Objects (DPDD table 4,
lcPeriodic and lcNonPeriodic) and DIAObjects (DPDD table 2, lcPeriodic
and lcNonPeriodic). They are calculated and recorded separately in each
band. Calculations for Objects are performed based on forced point source
model fits (DPDD table 5, psFlux). Calculations for DIAObjects are per-
formed based on point source model fits to DIASources (DPDD table 1,
psFlux). In each case, calculation requires the fluxes and errors for all of the
sources in the lightcurve to be available in memory simultaneously.

8.23.1 Characterization of periodic variability

• Characterize lightcurve as the sum of a linear term plus sinusoids at
three fundamental frequencies plus four harmonics:

y(t) = ct+
3∑
i=1

4∑
j=1

yi(t|jfi) (11)

yi(t|jfi) = ai,j sin(2πjfit) + bi,j cos(2πjfit) + bi,j,0 (12)

where i sums over fundamentals and j over harmonics.

https://docushare.lsstcorp.org/docushare/dsweb/Get/LSE-163
https://docushare.lsstcorp.org/docushare/dsweb/Get/LSE-163
https://docushare.lsstcorp.org/docushare/dsweb/Get/LSE-163
https://docushare.lsstcorp.org/docushare/dsweb/Get/LSE-163
https://docushare.lsstcorp.org/docushare/dsweb/Get/LSE-163

8 ALGORITHMIC COMPONENTS 133

• Use iterative application of the generalized Lomb-Scargle periodogram,
as described in [24], to establish the fundamental frequencies, f1, f2, f3:

– Search a configurable (minimum, maximum, step) linear frequency
grid with the periodogram, applying a log f/fN penalty for fre-
quencies above fN = 0.5〈1/∆T 〉, identifying the frequency f1 with
highest power;

– Fit and subtract that frequency and its harmonics from the lightcurve;

– Repeat the periodogram search to identify f2 and f3.

• We report a total of 32 floats:

– The linear coefficient, c (1 float)

– The values of f1, f2, f3. (3 floats)

– The amplitude, Ai,j =
√
a2i,j + b2i,j, for each i, j pair. (12 floats)

– The phase, PHi,j = arctan(bi,j, ai,j)− jfi
f1

arctan(b1,1, a1,1), for each

i, j pair, setting PH1,1 = 0. (12 floats)

– The significance of f1 vs. the null hypothesis of white noise with
no periodic signal. (1 float)

– The ratio of the significance of each of f2 and f3 to the significance
of f1. (2 floats)

– The ratio of the variance of the lightcurve before subtraction of
the f1 component to its variance after subtraction. (1 float)

NB the DPDD baselines providing 32 floats, but, since PH1,1 is 0 by
construction, in practice only 31 need to be stored.

8.23.2 Characterization of aperiodic variability

In addition to the periodic variability described above, we follow [24] in
providing a series of statistics computed from the lightcurve which do not
assume peridoicity. They define 20 floating point quantities in four groups
which we describe here, again with the caveat that future revisions to the
DPDD may require changes to this list.

Basic quantities:

https://docushare.lsstcorp.org/docushare/dsweb/Get/LSE-163
https://docushare.lsstcorp.org/docushare/dsweb/Get/LSE-163

8 ALGORITHMIC COMPONENTS 134

• The maximum value of delta-magnitude over delta-time between suc-
cessive points in the lightcurve.

• The difference between the maximum and minimum magnitudes.

• The median absolute deviation.

• The fraction of measurements falling within 1/10 amplitudes of the
median.

• The “slope trend”: the fraction of increasing minus the fraction of
decreasing delta-magnitude values between successive pairs of the last
30 points in the lightcurve.

Moment calculations:

• Skewness.

• Small sample kurtosis, i.e.

Kurtosis =
n(n+ 1)

(n− 1)(n− 2)(n− 3)

n∑
i=1

(
xi − x
s

)4

− 3(n− 1)2

(n− 2)(n− 3)

(13)

s =

√√√√ 1

n− 1

n∑
i=1

(xi − x)2 (14)

• Standard deviation.

• The fraction of magnitudes which lie more than one standard deviation
from the weighted mean.

• Welch-Stetson variability index J [26], defined as

J =

∑
k sgn(Pk)

√
|Pk|

K
,

where the sum runs over all K pairs of observations of the object, where
sgn returns the sign of its argument, and where

Pk = δiδj (15)

δi =

√
n

n− 1

νi − ν
σν

, (16)

8 ALGORITHMIC COMPONENTS 135

where n is the number of observations of the object, and νi its flux in
observation i. Following the procedure described in Stetson [26], the
mean is not the simple weighted algebraic mean, but is rather reweighted
to account for outliers.

• Welch-Stetson variability index K [26], defined as

K =
1/n

∑
i=1N |δi|√

1/n
∑

i=1N |δ2i |
,

where N is the total number of observations of the object and δi is
defined as above.

Percentiles. Taking, for example, F5,95 to be the difference between the
95% and 5% flux values, we report:

• All of F40,60/F5,95, F32.5,67.5/F5,95, F25,75/F5,95, F17.5,82.5/F5,95, F10,90/F5,95

• The largest absolute departure from the median flux, divided by the
median.

• The radio of F5,95 to the median.

QSO similarity metrics, as defined by Butler & Bloom [10]:

• χ2
QSO/ν.

• χ2
False/ν.

8.24 Proper Motion and Parallax from DIASources:
UW

Every time we observe another apparition of a DIAObject, we have an
opportunity to update/improve the proper motion and pararllax models. The
DIASources are associated with the current best model from the DIAObject.
The proper motion and parallax are then refit using the new observation.

8 ALGORITHMIC COMPONENTS 136



Do we actually want to do this:
I had a conversation about this with Colin. In reqlity we can’t do
as good a job with proper motion and parallax in nightly processing
as we can in DRP. It’s true that we would have no estimate of the
proper motion or parallax until the first release if we do not calculate
it in nightly, but I’d argue that before the first release we don’t
have the baseline to calculate an accurate anyway. Further, the
measurement in DRP can be much better since we can do it as part
of joint astrometric fitting. If we don’t measure pm and parallax in
nightly, we could still use the DRP measurement in the associated
DRP object for association.



8.25 Association and Matching

Association between an external catalog of sources with objects detected from
an LSST visit is critical to many aspects of the nightly and data release process-
ing. External catalogs may come from photometric or astrometric standards
(e.g. catalogs from GAIA), from previous LSST observations (e.g. Objects),
or from catalogs derived from previous observations (e.g. the ephemerides of
moving sources).

For cross-matching to reference catalogs the algorithm must be able
to account for variation in scale and rotation of the field, and for optical
distortions within the system. It must be fast and robust to errors and capable
of matching across different photometric passbands.

For association with previous LSST observations the algorithms will need
to be probabilistic in nature, must account for cases where the image quality
results in the blending of sources, must work at high and low Galactic latitude,
and must allow for sources with varying and variable SEDs.

Algorithmic components in this section will typically (but perhaps not
always) delegate to the N-Way Matching software primitives, which provide
spatial indexing and data structures for simple spatial matches.

8.25.1 Single CCD to Reference Catalog, Semi-Blind: UW

Given a set of sources detected on a single sensor, and a corresponding
reference catalog we adopt a simple pattern matching algorithm to cross-
match between the catalogs. We assume that the sources detected on the
sensor have approximate positions given by the telescope’s initial estimate

8 ALGORITHMIC COMPONENTS 137

of a WCS, that we know the plate scale of the system, and that positional
errors are available for both the sensor and reference catalog.

Cross-matching is undertaken using the Optimistic Pattern Matching (B)
algorithm of Tabur [?]. The algorithm defines an order m (default 6) size
m− 1 acyclic connected tree as the pattern to match between catalogs. The
details of the LSST implementation of the Optimistic Pattern Matching (B)
algorithm are as follows:

• An optical distortion model is subtracted from the positions of the
detected sources on the sensor to define a gnomonic plane projection.

• Detected sources are ordered in descending brightness and the brightest
n stars (default = 50) are selected, I

• Given the extent of the sensor (defined from the initial WCS) the
brightest n sources are extracted from the reference catalog, R

• The pairwise distances and position angles between the reference catalog
sources, R, are measured (generating n(n− 1)/2 pairs)

• For the m brightest sources in I the length of the edges and the position
angles of the edges of the graph are calculated (with the brightest source
the center of the graph). Angles are relative to the sensor orientation
and distances are in angular coordinates.

• A binary search identifies all pairs in R with a length matching the length
of the edge containing the brightest two sources (within a tolerance that
has a default pf 3 arcsec). The difference in position angle between the
reference and source edges is assumed to be due to the rotation of the
sensor relative to the reference catalog and this position angle difference
is accounted for in all remaining matches

• The remaining m − 2 edges are compared to the pairs in R and a
match is assumed if the edge length and postion angles are within the
tolerances (defaults 3 arcsec and 1 degree respectively)

• If m − 1 matches are not found the search repeats; initially for the
remaining matches to the length of the edge corresponding to the
brightest two sources and then for a new graph that excludes the
brightest object fromI and finds the next brightest m sources

8 ALGORITHMIC COMPONENTS 138

Once m− 1 edges match an initial verification step is performed where a
gnomonic projection of the reference catalog is fit to the matched stars. Given
a consistent fit to the gnomonic projection all sources and reference objects
are matched in sensor coordinates (sorted by brightness) with the brightest
source in I selected when two sources are within the match tolerance (default
3 arcsec)

For the case of no WCS for the sensor or a significant error in the WCS
(> 3 arcsec) a blind matching will be undertaken using the algorithms in
astrometry.net (ref)

8.25.2 Single Visit to Reference Catalog, Semi-Blind: UW

For single visit cross-matching matches all sources within a focal plane will
be matched to the reference catalog, R. This case is a modification of the
original Tabur algorithm. It must account for significant distortions across
the focal plane, and for deviations from a Euclidean space when due to the
gnomonic projection.

Modifications from the single sensor cross matching are:

• Given a model for the postions and orientations of the sensors on the
focal plane, sensor coordinates are transformed to focal plane coordinates

• The focal plane coordinates are corrected for the optical distortion
model to provide a Euclidean space

8.25.3 Multiple Visits to Reference Catalog: Princeton

AUTHOR: Jim

• Match sources from multiple visits to a single reference catalog, assuming
good WCS solutions.

8.25.4 DIAObject Generation: UW

Assuming that all DIAObject positions been propagated to the MJD of
the visit (including proper motion and the generation of ephemerides for
SSObjects) association of a DIASource with a DIAObject simplifies to the
probabilistic assignment of a DIASource to a DIAObject.

We define this assignment in terms of the Bayes Factor, B, that defines
the ratio of the probability that the observed data, D, is more likely given a

8 ALGORITHMIC COMPONENTS 139

model, H, that the DIASource and DIAObject are matched, than for a model
K, where the sources do not match.

B(H,K|D) =
p(D|H)

p(D|K)
(17)

see Budavari and Szalay [?].
Assuming a normal distribution for positional uncertainties the Bayes

Factor is given by,

B(H,K|D) =
sinhw

w

n∏
i=1

wi
sinhwi

(18)

with

w = |
n∑
i=1

wix̄i| (19)

with xi the 3D unit vector for a position on a sphere, and w = 1/σ2 with σ
the uncertainty on the position.

For the case of two sources and small uncertainties on the positions this
simplifies to

w =
√

(w2
1 + w2

2 + 2w1w2 cos(φ) (20)

and

B =
2

σ2
1 + σ2

2

exp(− φ2

2(σ2
1 + σ2

2)
) (21)

with φ the angle between the positions.
For all pairs of sources within a given tolerance the Bayes Factor will

be calculated and the source with the largest Bayes Factor assigned to
the DIAObject. For sources above the Bayes Factor threshold that were
not assigned the Bayes Factor and DIAObject ID will be persisted in the
DIASource. Thresholds for the Bayes Factor will be derived from simulations.

An extension to Bayes Factor association that accounts for unknown
proper motions is also possible [?]

8.25.5 Object Generation: Princeton

AUTHOR: Jim

• Match coadd detections from different bands/SEDs/epoch-ranges, merg-
ing Footprints and associating peaks.

• Also merge in DIASources or (if already self-associated) DIAObjects.

8 ALGORITHMIC COMPONENTS 140

8.25.6 Blended Overlap Resolution: Princeton

AUTHOR: Jim

• Given two or more overlapping blend families (with associated measure-
ments), merge them by selecting the “best” measurement for each child
object.

8.26 Raw Measurement Calibration: Princeton

AUTHOR: Jim

• Apply astrometric and photometric calibrations to measurements in
raw units, transforming them to calibrated quantities.

• May be applied within the database after ingest in some contexts, but
needs to be available outside the database as well.

8.27 Ephemeris Calculation: UW

Ephemeris calculation for the purpose of association in the nightly pipelines
and for attribution and precovery in dayMOPS will require an indexing
algorithm as well as a numerical integration phase. The JPL Horizons page
reports 700, 000 asteroid orbits. This is far too many to run forward for
every observation we will take. Thus, we will need to predict which bodies
are likely to cross an aperture on the sky.

There are tools that allow for orbit prediction. As a baseline, we suggest
using the OOrb (https://github.com/oorb/oorb). Regardless of the tool we
use in production, it will need the following features:

• Propagation: Take a set of orbits and do the full numerical integration
forward/backward in time to produce a new set of orbital elements

• Prediction: Produce a set of topocentric positions for a given set of
objects at a particular time

In order to make spatial lookup of the orbits of interest fast, we will
checkpoint the location of every solar system object at the beginning, middle
and end of each upcoming night. The checkpointing will involve saving
topocentric positions for all solar system objects and saving the propogated

8 ALGORITHMIC COMPONENTS 141

orbital parameters at the end of the night. We cannot precompute this for the
duration of the survey because we will find new objects and we will update
orbits of known objects. This computation will be done daily as part of the
prep-work for nightly observing. This is not a large computational challenge
and is pleasingly parallel.

During nightly processing ephemeris prediction will be carried out on
the objects that may intersect the visit in question. For spatial filtering, all
objects will be assumed to move linearly over half the night. The on-sky visit
aperture with an appropriate buffer to account for the maximum acceleration
of a solar system object over 4̃ hours will determine which objects potentially
fall in the exposure. For those few thousand objects, precise ephimerides will
be calculated for the purpose of association.

8.28 Make Tracklets: UW

Tracklets are the building blocks of orbits. The process of linking observations
is to pair up all observations that are within some distance of each other
given a maximum on sky velocity. For any source, tracklets can be found
by looking in circular apertures in subsequent visits with the radius of the
circular aperture growing with time by vmaxdt for vmax in appropriate units.
In practice we will follow [?] and build KD-trees on detections from each
visit. KD-trees allow fast range searches. Linking up tracklets simply involves
a series of range searches on available visits.

The number of tracklets goes up as O(n2) where n is the number of images
covering a region in a given time span. However, many of the tracklets
are degenerate (i.e. for an object moving slowly across the sky, it’s possible
that the beginning, ending and every other image inbetween could be within
the velocity cut). These degenerate tracks are “collapsed” by computing a
velocity vector for each tracklet. The tracklets are then binned in speed,
perpendicular distance from a reference location, and direction. Similar to a
Hough transform, degenerate tracklets will tend to accupy similar bins. Bins
with multiple tracklets will be used to reduce the tracklets to the longest
linear tracklet consistent with the tracklets.

When tracklets are collapsed, we gain more information about the collasped
tracklet since we have multiple observations of it. This allows some tracklets
to be dismissed ds spurious linkages. Any observation that deviates from the
linear fit to the collapsed tracklet by a threshold amount will be discarded as
spurious.

8 ALGORITHMIC COMPONENTS 142

8.29 Attribution and precovery: UW

Precovery is the process of adding ’orphan’ DIASources, those that do not
belong to a SSObject or DIAObject, to a SSObject. Any time an SSObjects
orbital parameters change significanly, it’s possible that DIASources not asso-
ciated previously could now match. The process is to calculate ephemerides
backward in time from the earliest observation as far as is possible given the
uncertainty in the orbit. These ephemerides are compared to the orphan
DIASources. If a match is found, a new orbit is fit and if the new orbit is a
better fit than the old one, the SSObject is updated with the new fit.

Attribution is the process of adding tracklets to known SSObjects. For a
given time window, topocentric ephemerides are calculated for all SSobjects
that could potentially intersect any of the images in that window at the
observation times of each of the images. These ephimerides are then compared
to the tracklets in the time window. If any of them match in locatio and
velocity, a new orbit is calculated. If the new orbit is better than the old on,
the tracklet is tagged as being part of that SSObject and the SSOBject is
updated with the new orbital parameters.

Since both attribution and precovery involve updating the SSObject, this
process is recursive. The cadence of the recursion will be daily. Since we run
attribution and precovery at least once during every run of the moving object
pipeline, there is little need to recurse on shorter timescales.

8.30 Orbit Fitting: UW

Given a database of tracklets not associated with any SSobject, we will look
for tracks that match physical orbits.

Finding tracks is a tricky problem. We will follow the approach presented
in [?]. Where all except the most quickly moving bodies will have linear
motion over a night, this is not true over the LSST discovery window of
30 days. In order to have high quality candidate tracks, we require three
tracklets per track. Scince there are limits to how fast solar system objects
can move and also how fast the can accellerate, we can build a KD-tree on
the tracklest in a given observationin velocity and position. Given a node,
this implies an acceleration for nodes in other trees. Since we require at least
one support tracklet between any two endpoint tracklets, we can discard any
nodes that do not have at least on matching node between them. With this in
mind, we search for pairs of tracklets that match the velocity and acceleration

8 ALGORITHMIC COMPONENTS 143

cuts and are on different nights. If there is also at least one node between
them in time (and on a different night than either of the endpoints) that also
pass the velocity and acceleration criteria, all nodes are searched for tracks.

In order to validate candidate tracks, a quadratic fit to the orbit is
attempted with higher order topocentric effects due to reflex motion of the
Earth included. These effects depend on the distance of the object from the
Earth, so the range is fit for as part of the fitting process. For tracks with
sufficiently good χ2, the tracks are passed on to an orbit fitter. As above,
there are tools to fit for orbital parameters given a set of observations. We
will use these as our final orbit determination.

8.31 Orbit Merging: UW

Bin all SSObjects of interest in orbital parameter space, by building a tree
on the SSObject database. If there are any orbits that are sufficiently close
in parameter space, they will be merged into a single orbit and the SSObject
database updated.

9 SOFTWARE PRIMITIVES 144

9 Software Primitives

9.1 Cartesian Geometry

• Geometry in image, focal plane coordinate systems.

• Includes continuous (floating point) and discrete (integer) versions of
some things; integer versions refer to entire pixels, which makes them
somewhat different.

• May need augmented versions of some classes to allow them to know
what coordinate system they’re in.

• May need augmented versions of some classes to store uncertainty.

• All classes need to be persistable. Some need to be persistable to
individual records (via e.g. FunctorKeys)

• All classes have counterpart Spherical classes related to them by WCS
transforms.

9.1.1 Points: UW

• Needs sensible handling of arithmetic operators. Currently implemented
by making Extent a separate class, adding CoordinateExpr for element-
wise comparisons – but those aren’t the only options.

• Need continuous (PointD) and discrete (PointI) versions.

• 3-d continuous Point/Extent also useful, especially in representing unit
vectors on the sphere. May not need to be the same template class (and
maybe it shouldn’t be, if it simplifies our code).

• Probably need to make these immutable (or have an immutable version)
at least in Python so they can be exposed as properties.

• Needs to be persistable to individual records in the table library.

• Probably needs augmented version with uncertainty.

• Probably needs augmented version with coordinate system.

9 SOFTWARE PRIMITIVES 145

9.1.2 Arrays of Points: UW

• Need containers for Points that work well in both C++ and Python
– more than just a naively-wrapped std::vector would provide (in
terms of NumPy interoperability, mostly). Probably something based
on ndarray, translating to a NumPy array with x and y fields?

• Unclear if we need a container with dynamic size. Could probably use
std::vector and Python list while building arrays, then freeze into
a fixed, viewable array.

• Probably needs augmented version with coordinate system (all points
in same coordinate system).

• Should look into what Astropy does here.

9.1.3 Boxes: UW

• Need continuous (BoxD) and discrete (BoxI) versions, with different
relationships between min, max, and dimensions.

• Probably need to make these immutable (or have an immutable version)
at least in Python so they can be exposed as properties.

• Needs to be persistable to individual records in the table library.

• Spherical counterpart is actually Spherical Polygon.

9.1.4 Polygons: UW

• Only continuous version needed.

• Mostly used to represent large-scale masks (regions around bright stars,
vignetted regions).

• Needs to support rasterization to mask and/or footprint.

• Needs to support efficient topological operation and predicates with
other Polygons, Points, and Boxes (probably not Ellipses).

9 SOFTWARE PRIMITIVES 146

9.1.5 Ellipses: Princeton

• Only continuous version needed.

• Mostly used to represent source/object shapes.

• Needs to support many different ellipse parameterizations.

• Needs to support fast evaluation of elliptically-symmetric functions (via
computing the generating affine transform)

• Need version that knows its position and one that doesn’t.

• Needs to support rasterization to mask and/or footprint

• May need an immutable version in Python (not yet certain).

• May need an augmented version with uncertainty.

9.2 Spherical Geometry

The spherical geometry library is a dependency of the database as well
as applications, it includes fundamental types that are logically present in
database tables (as groups of fields), and some geometry classes are important
for spatial indexing.

• Geometry on the sky

• All positions and distances are Angles; need type safety for angle unit.

• May need augmented versions of some classes to allow them to know
what coordinate system they’re in.

• May need augmented versions of some classes to store uncertainty.

• All classes need to be persistable. Some need to be persistable to
individual records (via e.g. FunctorKeys)

9 SOFTWARE PRIMITIVES 147

9.2.1 Points: UW

• Needs sensible handling of arithmetic operators. Point/Extent split
probably an even better idea here.

• Probably need to make these immutable (or have an immutable version)
at least in Python so they can be exposed as properties.

• Needs to be persistable to individual records in the table library.

• Probably needs augmented version with uncertainty.

• Probably needs augmented version with coordinate system.

9.2.2 Arrays of Points: UW

Same requirements as Cartesian Arrays of Points.

9.2.3 Boxes: UW

• Not obvious we need this at all.

• Defined on long/lat grid, so not a box in any Cartesian projection.

• Needs special handling for poles?

9.2.4 Polygons: UW

• Connecting points with great circles is probably sufficient, even if this
only approximately maps to Cartesian polygons in most projections; we
will have very few Cartesian polygons that extend beyond the size of
one CCD, and for those great circles should be fine.

• Needs to support efficient topological operation and predicates with
other Polygons, Points, and Boxes (probably not Ellipses).

• May need to support rasterization to some spherical pixelization scheme
(e.g. HTM), but those requirements are probably driven more by
database.

9 SOFTWARE PRIMITIVES 148

9.2.5 Ellipses: Princeton

• Doesn’t need to be a true spherical geometry - we really just need a
Cartesian ellipse with angular position and size, defined via a gnomonic
plane projection centered on the ellipse. All spherical ellipses will be
small enough that we don’t have to worry about the topology of large
ellipses.

• Probably needs augmented version with uncertainty.

9.3 Images

9.3.1 Simple Images: Princeton

• Conceptually just a numpy array + xy0

• Still need to fix xy0 behavior on iterators/locators

• Constness is a mess

• Need more Pythonic interface to templates.

• Needs FITS import/export in addition to some round-trip internal
representation. May need FITS roundtrip.

9.3.2 Masks: Princeton

• Should not rely entirely on bits in integer images; consider extending to
include:

– a container of Footprints (actually PixelRegions).

– a container of Polygons or other geometries.

• May want to switch from compile-time number of bits (Array<uintN,2>)
to dynamic (Array<uint8,3>).

• Can we do anything to fix confusing semi-singleton mask plane dict
behavior, while getting the functionality we want?

• Also all requirements of simple images.

9 SOFTWARE PRIMITIVES 149

9.3.3 MaskedImages: Princeton

Includes components:

Image A 2-d array of calibrated, background-subtracted pixel values in
counts.

Mask A boolean representation of artifacts, detections, saturation, and other
image. This may include (but is not limited to) a 2-d integer arrays
with bits interpreted as different “mask planes”; it may also include
using Footprints to describe labeled regions.

Uncertainty A representation of the uncertainty in the image. This includes
at least a 2-d array capturing the variance in each pixel, and it may
involve some other scheme to capture the covariance.

Other notes:

• Want to support constant mask and uncertainty, probably via single-
pixel images with zero strides.

• Want NumPy-like view of all three planes. Probably a new object that
implements array interface without inheriting from numpy.ndarray.

• Also all requirements of simple images.

9.3.4 Exposure: Princeton?

Includes components:

MaskedImage Image, mask, uncertainty.

Background An object describing the background model that was sub-
tracted from the image; the original unsubtracted image can be obtained
by adding an image of this model to the Exposure’s image plane. Back-
grounds are more complex than merely an image or even an interpolated
binned image; background estimation will proceed in several stages, and
these stages (which may happen in different coordinate systems) must
be combined to form the full background model.

PSF A model of the PSF; see PSF. This includes a model for aperture
corrections.

9 SOFTWARE PRIMITIVES 150

WCS The astrometric solution that related the image’s pixel coordinate
system to coordinates on the sky; see WCS.

PhotoCalib The photometric solution that relates the image’s pixel values
to magnitudes as a function of source wavelength or SED and position.
Some PhotoCalibs may represent global calibration and some may
represent relative calibration.

CameraGeom Object describing the detector this image corresponds to, if
applicable. Could go on a subclass of Exposure for sensor-level images.

CoaddInputs Table(s) describing the inputs that went into this coadd.
Could go on a subclass of Exposure for sensor-level images.

VisitInfo Additional metadata about visit (including pointing and and time
information).

Other notes:

• Probably missing some components in the above list.

• Want to forward more MaskedImage operations to Exposure (so we
don’t have to say getMaskedImage() all the time).

• Need to be able to persist and pass around non-image components
separately.

• Need to integrate ValidPolygon component in current design with Mask.

• Needs FITS import/export in addition to some round-trip internal
representation. May need FITS roundtrip.

9.4 Multi-Type Associative Containers: UW?

• Replacement(s) for PropertyList/PropertySet.

• Needs to be more Pythonic; more like dict or OrderedDict.

• Need a variant that can be used to round-trip FITS headers.

9 SOFTWARE PRIMITIVES 151

9.5 Tables: Princeton

All classes need round-trip internal persistence and FITS, ASCII, SQL im-
port/export.

9.5.1 Source

• In-memory data structure for Source, DIASource, ForcedSource tables.

• Can have (Heavy)Footprint attached.

• Always has ID, coord (at least conceptually; may be computed on-the-
fly).

• Has slots.

9.5.2 Object

• In-memory data structure for Object, DIAObject.

• Must be able to represent information from multiple bands and coadd
flavors (array fields? nested rows of another type?)

• Needs to have multiple (Heavy)Footprints attached.

• Needs to have join to table of Monte Carlo samples.

• Maybe just want to be able to attach arbitrary objects?

• Has slots.

9.5.3 Exposure

• Want to be able to store all non-image Exposure components in a single
record.

9.5.4 AmpInfo: UW

• Used to record electronic parameters for amplifiers in Camera Descrip-
tions.

9 SOFTWARE PRIMITIVES 152

9.5.5 Reference

• Need table class for (external) reference catalogs.

• Has a lot in common with Source and Object, but needs fewer attach-
ments, and typically is in calibrated units instead of raw units.

9.5.6 Joins

• Need an in-memory representation of relationships (one-many, many-
many, maybe one-one) between tables.

• Need pointer-like behavior (e.g. for one-many, a Record looks like it
has another Catalog as one of it fields)

• Used to represent outputs of N-Way Matching.

• Used to store samples with Object tables.

• Used to related ForcedSource to Object and DIASource to DIAObject.

9.5.7 Queries

• Need basic SQL-WHERE-like query support, at least in Python.

• A concrete use case is in for use as source selectors for e.g. PSF
candidates.

• Could maybe delegate this to Pandas and/or Astropy, use NumPy
expressions.

• May need to support string expressions (supplied as configuration
parameters, for instance).

• Actually being able to write SQL could be very nice. In-memory sqlite
back-end? Some other third-party SQL parser, with our own (numpy-
compatible) storage backend?

9 SOFTWARE PRIMITIVES 153

9.5.8 N-Way Matching

AUTHOR: MWV

• Match sources and associate objects from M catalogs each with ∼N
sources. The API should match in either (x, y) or (RA, Dec). Positions
for source detections solutions will be assumed to already be correct.
Order of individual catalogs should not matter. Algorithm will need
to be able to run on M∼1,000 visits. Such a tool will allow flexible
analyses without the requirement for a larger database structure or
full coadd-based object identifiction and forced photometry. Even
within the framework of a complete Level-2 DRP release, such a N-way
matching capability will also be important for comparing the results
of single-visit photometry with the deep coadd-based object detection
and forced photometry. A specific example use case for lightweight
quality assessment is taking the processed catalogs for M=1,000 images
each with N=2,000 sources and creating object associations add derived
repeatability and time-variable summary statistics. This algorithm
and associated API should provide a general purpose tool useful for
algorithm developers, data quality assessment, and science users. A
trivial in-memory version (using full catalogs), a streamlined in-memory
version (load only the coordinates), and a larger-than-memory version
will each be useful and important and will entail increasingly more
significant design and performance efforts.

9.6 Footprints: Princeton

All classes need to be persistable (usually as components of larger data
structures such as tables or masks).

• Footprint itself includes both Spans and Peaks, representing a detection.

• Footprints are guaranteed to be contiguous.

• Concept is fine, class itself needs a lot of cleanup.

9.6.1 PixelRegions

• Very lightweight data structure that is just a container of Spans -
represents just a pixel region.

9 SOFTWARE PRIMITIVES 154

• Needs large suite of topological operations.

• May be noncontiguous.

9.6.2 Functors

• Run functions on each pixel in a PixelRegion

• Needs to support unary, binary, maybe ternary?

• Needs to support modifing arguments in-place and returning them.

• Abstracts whether pixels are from a 2-d image or a flattened 1-d array.

9.6.3 Peaks

• Needs to record position, rough flux.

• Needs to be extensible to also hold at least flags.

• Needs very low overhead; will have many, many peaks.

• Current implementation uses custom table class, but is a bit clunky.

9.6.4 FootprintSets

• Specialized container for Footprints.

• Because Footprints are guaranteed contiguous, most topological oper-
ations are here instead (as they have the potential to merge or split
Footprints).

• Needs better interoperability with table library, which is also a kind of
container of Footprints.

9.6.5 HeavyFootprints

• A Footprint with its own pixels, stored as a flattened 1-d array.

• May sometimes need mask and uncertainty as well, may not.

• Definitely need a version that doesn’t have mask and uncertainty.

9 SOFTWARE PRIMITIVES 155

9.6.6 Thresholding

• Low-level operations for finding above-threshold regions and peaks
within them (on MaskedImages as well as Images).

• Should decompose into operations that just find above-threshold regions
(as PixelRegions), operations that just find Peaks within PixelRegions,
and a higher-level operation to do both, returning a FootprintSet.

9.7 Basic Statistics: Princeton

• Various robust statistics for central tendency and distribution widths,
measured on 2-d and 1-d arrays.

• Needs to be able to make use of mask and uncertainty arrays.

• Needs to work on 2-D Images and MaskedImages

• Needs to work on stacks of aligned pixels for coaddition.

9.8 Chromaticity Utilities: UW?

All classes need to be persistable (usually as components of larger data
structures such as tables or camera descriptions).

9.8.1 Filters

• One or more classes that represent the complete wavelength-dependent
throughput of the system and all of the multiplicative components that
comprise it (actual filter curves, sensor QE, etc.).

• Needs to be able to handle position-dependence as well, including
coordinate transformations of position dependency (from e.g. filter
coordinate system to focal plane to individual sensors).

• Need concrete classes that are mostly fixed with a parameters to repre-
sent highly-variable aspects (e.g. atmospheric absorption)

• Probably need another class to represent a telescope or survey’s set of
filters.

9 SOFTWARE PRIMITIVES 156

9.8.2 SEDs

• One or more classes that represent object spectra.

• Needs interoperability with filter classes (integrate to yield fluxes, ...?)

• Defines canonical approach to inferring SED from colors (which requires
a library of canonical SEDs)

• Used to evaluate PSF and PhotoCalibs.

9.8.3 Color Terms

• Low-order approximations to mapping between different filter systems.

• Unclear (to jbosch) whether we’ll use these at all in LSST production
pipelines, but definitely needed for work with precursor data.

9.9 PhotoCalib: Princeton?

Needs to be persistable (usually as components of larger data structures such
as Exposure).

• Spatially- and wavelength-dependent photometric calibration.

• May be relative or absolute.

• Needs to represent rescalings somehow (change from flats-for-backgrounds
to monochromatic object flats).

• Needs to hold its own uncertainty (may not be just one number).

• May ultimately be a hierarchy of classes, intead of just one.

• Probably needs to hold a Filter. This is mostly just convenience; if it
doesn’t have one it needs to be passed one to be used.

9 SOFTWARE PRIMITIVES 157

9.10 Convolution Kernels: Princeton

Probably needs to be persistable, but only to ease persistence of higher-level
objects that may be built on top of them.

• Supports spatially-varying convolution with a variety of tricks for special
kernels (e.g. spatially varying linear combinations of fixed kernels,
kernels separable in x and y).

• Must support correlation as well.

• Closely related to PSFs, but kernels are not wavelength-dependent,
and PSFs are. Not clear whether difference imaging kernels should
actually be Kernels (they could be more like PSFs if they’re wavelength-
dependent).

• Closely related to image resampling. Can a resampling kernel be a
Kernel? Implies that output pixel grid could be different from input
pixel grid.

• May want to be able to compose Kernels.

• Needs to support approximation on different spatial scales (smoothly
varying kernels need not be fully evaluated at every pixel).

9.11 Coordinate Transformations: UW

• Need general system for 2-d coordinate systems and transformations,
including both spherical and Cartesian systems.

• Transforms must be composable; conceptually we have a graph with
coordinate systems as nodes and transforms as edges.

• Needs close integration with geometry libraries.

• Needs very lightweight implementations of affine/linear transforms.

• Needs interoperability with Image xy0 concept.

• Needs serialization to both internal (round-trippable) formats and im-
port/export to standard external formats. Ideally the internal format
would also be at least somewhat external (i.e. shared with Astropy).

9 SOFTWARE PRIMITIVES 158

• Coordinate tranforms are not wavelength-dependent.

• See also DMTN-10.

9.12 Numerical Integration: Princeton

• Standard basic numerical integration based on Gaussian quadrature:
can probably just wrap an external library.

• Unclear whether we also need any differential equation integration.

• May need specialized routines for computing multivariate Gaussian
and/or Student’s t CDFs for Monte Carlo sampling.

9.13 Random Number Generation: Princeton

• Just need standard distributions and generators provided by most
external RNG libraries.

• Need to design carefully with parallelization primitives to ensure deter-
ministic results when running in parallel.

9.14 Interpolation and Approximation of 2-D Fields:
UW?

• Unified interface to spline, polynomial, inverse-distance approaches to
representing 2-d fields.

• Used for at least backgrounds and aperture corrections, maybe PSF
modeling, WCS, other things.

9.15 Common Functions and Source Profiles: UW

• Library of 2-d functions used for PSFs and galaxy profiles. Sersics,
Gaussians, Moffats, etc.

• Maybe delegate to GalSim (would probably require contributing required
features to GalSim)?

9 SOFTWARE PRIMITIVES 159

9.16 Camera Descriptions: UW

• What we call CameraGeom, but it’s more than geometry.

• Geometry is built on top of Coordinate Transformations library.

• Electronic descriptions built on top of AmpInfo Tables.

• Throughput descriptions built on top of Chromaticity Utilities

9.17 Numerical Optimization: Princeton

• Linear least-squares fitting with and without constraints, with and
without Bayesian priors.

• At least some nonlinear fitting with and without Bayesian priors (ex-
tension of Levenberg-Marquardt probably). May need to handle some
limited constraints as well.

• Could invest a lot of effort early in this and do it well; this would retire
risk elsewhere. Or we can do this as-needed and probably spend less
effort overall, but may find ourself blocked at inconvenient times by
lack of hard-to-implement features.

9.18 Monte Carlo Sampling: Princeton

• Need modern MCMC sampler. Could probably use external code, but
it’s not entirely clear we can afford to do this in Python.

• Need adaptive importance sampling from mixture distributions and
MCMC chains.

9.19 Point-Spread Functions: UW

• Includes aperture corrections.

• Includes characterization of extended wings of PSF.

• Wavelength-dependent.

• Must support coaddition of PSF models.

9 SOFTWARE PRIMITIVES 160

• May need know its uncertainty, and be able to sample PSF realizations
form this.

9.20 warping: Princeton

We need functions to warp regularly gridded data to a new grid in an arbitrary
coordinate system with flux conservation.

9.21 Fourier Transforms: UW

We will need to calculate discrete Fourier transforms on images in both
directions.

9.22 Tree Structures: UW

Maybe just having a KD-tree we can use in C++ and Python will be enough,
however we likely will ndeed a C++ accessible version since there are already
at least two C++ implementations currently in the stack.

9.23 Tools: Both

KSK: When going through the algorithmic components, I noticed many tools
we will need. By tools, I really just mean a well known algorithm that we
can apply as a black box to data for a particular purpose. It’s possible this
should go someplace else. I’m open to suggestions.

• Periodogram – This will likely also require some sort of data type to
hold the periodogram

• Hough transform and Canny algorithm – We may need one or both of
these. We may also need variants on the standard implementation.

• General linear algebra framework including on sparse matrices.

• Data discovery – Simply ask questions like: ”What data are at this
location in this repository” this is likely a middleware requirement

• Reference catalog on disk representation for fast localization this is
also most likely a middleware requirement

9 SOFTWARE PRIMITIVES 161

• orbit propagation

• orbit prediction

• orbit fitting

10 GLOSSARY 162

10 Glossary

API Applications Programming Interface

CBP Collimated Beam Projector

CCOB Camera Calibration Optical Bench

CTE Charge Transfer Efficiency

DAC Data Access Center

DAQ Data Acquisition

DMS Data Management System

DR Data Release.

EPO Education and Public Outreach

Footprint The set of pixels that contains flux from an object. Footprints of
multiple objects may have pixels in common.

FRS Functional Requirements Specification

mask An integer bitmask used to convey information about a particular
pixel, footprint, region, etc.

map A spatially varying scalar value representing a varying quantity e.g.
coverage.

MOPS Moving Object Pipeline System

OCS Observatory Control System

Production A coordinated set of pipelines

PFS Prime Focus Spectrograph. An instrument under development for the
Subaru Telescope.

PSF Point Spread Function

QE Quantum Efficiency

10 GLOSSARY 163

RGB Red-Green-Blue image, suitable for color display.

SDS Science Array DAQ Subsystem. The system on the mountain which
reads out the data from the camera, buffers it as necessary, and supplies
it to data clients, including the DMS.

SDQA Science Data Quality Assessment.

SNR Signal-to-Noise Ratio

SQL Structured Query Language, the common language for querying rela-
tional databases.

TBD To Be Determined

Visit A pair of exposures of the same area of the sky taken in immediate
succession. A Visit for LSST consists of a 15 second exposure, a 2
second readout time, and a second 15 second exposure.

VO Virtual Observatory

VOEvent A VO standard for disseminating information about transient
events.

WCS World Coordinate System. A bidirectional mapping between pixel-
and sky-coordinates.

REFERENCES 164

References

[1] M. Ankerst, M. M. Breunig, H.-P. Kriegel and J. Sander, OPTICS:
Ordering Points To Identify the Clustering Structure, Proc ACM
SIGMOD (1999).

[2] P. Antilogus, P. Astier, P .Doherty, A. Guyonnet and N. Regnault
The brighter-fatter effect and pixel correlations in CCD sensors
Journal of Instrumentation, Volume 9, Issue 3, article id. C03048 (2014).

[3] A. Becker et al, Report on Late Winter 2013 Production: Image
Differencing http://ls.st/x9f.

[4] A. Becker, Report on Summer 2014 Production: Analysis of
DCR, https://github.com/lsst-dm/S14DCR/blob/master/report/

S14report_V0-00.pdf.

[5] An algorithm for precise aperture photometry of critically sam-
pled images, MNRAS 431, 1275–1285, 2013

[6] J. S. Bloom et al, Automating discovery and classification of tran-
sients and variable stars in the synoptic survey era, PASP 124,
1175–1196 (2012).

[7] J. F. Bosch, Modeling Techniques for Measuring Galaxy Prop-
erties in Multi-Epoch Surveys, PhD Thesis, University of Califor-
nia, Davis (2011). http://adsabs.harvard.edu/abs/2011PhDT.......
226B

[8] J. Bosch, P. Gee, R. Owen, M. Juric and the LSST DM team,
LSST DM S13 Report: Shape measurement plans and
prototypes, https://docushare.lsstcorp.org/docushare/dsweb/

ImageStoreViewer/Document-15298

[9] J. Bosch, Measurement of Blended Objects in LSST.

[10] Optimal Time-Series Selection of Quasars, ApJ 141, 93 (2011).

[11] Automated Supervised Classification of Variable Stars I.
Methodology, A&A 475, 1159–1183 (2007).

http://ls.st/x9f
https://github.com/lsst-dm/S14DCR/blob/master/report/S14report_V0-00.pdf
https://github.com/lsst-dm/S14DCR/blob/master/report/S14report_V0-00.pdf
http://adsabs.harvard.edu/abs/2011PhDT.......226B
http://adsabs.harvard.edu/abs/2011PhDT.......226B
https://docushare.lsstcorp.org/docushare/dsweb/ImageStoreViewer/Document-15298
https://docushare.lsstcorp.org/docushare/dsweb/ImageStoreViewer/Document-15298

REFERENCES 165

[12] E. M. Huff et al, Seeing in the dark – I. Multi-epoch alchemy,
http://arxiv.org/abs/1111.6958.

[13] H. Furusawa et al, Hyper Suprime-Cam Survey Pipeline Descrip-
tion, http://hsca.ipmu.jp/pipeline_outputs.pdf.

[14] M. J. Jee and J. A. Tyson, Toward Precision LSST Weak-Lensing
Measurement. I. Impacts of Atmospheric Turbulence and Op-
tical Aberration, PASP 123, 596(2011).

[15] M. J. Jee, J. A. Tyson, M. D. Schneider, D. Wittman, S. Schmidt and
S. Hilbert, Cosmic shear results from the Deep Lens Survey. I.
Joint constraints on ΩM and σ8 with a two-dimensional analysis,
ApJ 765 74 (2013).

[16] J. Kubica et al, Efficiently Tracking Moving Sources in the LSST,
Bulletin of the American Astronomical Society, 37, 1207 (2005).

[17] D. Lang, D. Hogg, S. Jester and H.-W. Rix, Measuring the unde-
tectable: Proper motions and parallaxes of very faint sources,
AJ 137 4400–4111 (2009).

[18] R. H. Lupton et al, SDSS Image Processing II: The Photo
Pipelines. http://www.astro.princeton.edu/~rhl/photo-lite.

pdf

[19] R. Lupton and Ž. Ivezić, Experience with SDSS: the Promise and
Perils of Large Surveys, Astrometry in the Age of the Next Generation
of Large Telescopes, ASP Conferences Series, Vol 338 (2005). http:

//adsabs.harvard.edu/abs/2005ASPC..338..151L

[20] R. Lupton, M. Jurić and C. Stubbs, LSST’s Plans for Calibration
Photometry, July 2015.

[21] L. Denneau, J. Kubica and R. Jedicke, The Pan-STARRS Moving
Object Pipeline, Astronomical Data Analysis Software and Systems
XVI ASP Conference Series, Vol. 376, proceedings of the conference
held 15-18 October 2006 in Tucson, Arizona, USA. Edited by Richard A.
Shaw, Frank Hill and David J. Bell., p.257.

http://arxiv.org/abs/1111.6958
http://hsca.ipmu.jp/pipeline_outputs.pdf
http://www.astro.princeton.edu/~rhl/photo-lite.pdf
http://www.astro.princeton.edu/~rhl/photo-lite.pdf
http://adsabs.harvard.edu/abs/2005ASPC..338..151L
http://adsabs.harvard.edu/abs/2005ASPC..338..151L

REFERENCES 166

[22] N. Padmanabhan et al, An Improved Photometric Calibration of
the Sloan Digital Sky Survey Imaging Data, ApJ 674 1217–1233
(2008).

[23] A. Rasmussen, Sensor Modeling for the LSST Camera Fo-
cal Plane: Current Status of SLAC Originated Code July
2015. https://docushare.lsstcorp.org/docushare/dsweb/Get/

Document-8590.

[24] J. Richards et al, On Machine-learned Classification of Variable
Stars with Sparse and Noisy Time-series Data, ApJ 733 10 (2011).

[25] E. F. Schlafly et al, Photometric Calibration of the First 1.5 Years
of the Pan-STARRS1 Survey, ApJ 756 158 (2012).

[26] Stetson, P.B., On the Automatic Determination of Light-Curve
Parameters for Cepheid Variables, PASP 108 851–876 (1996).

[27] C. W. Stubbs, Precision Astronomy with Imperfect Fully De-
pleted CCDs – An Introduction and a Suggested Lexicon, Jour-
nal of Instrumentation, Volume 9, Issue 3, article id. C03032 (2014).

[28] A. S. Szalay, A. J. Connolly and G. P. Szokoly, Simultaneous Mul-
ticolor Detection of Faint Galaxies in the Hubble Deep Field,
AJ 117 68–74 (1999).

[29] C. Alard and R. H. Lupton, A Method for Optimal Image Subtrac-
tion, ApJ 503, 1996 325–331 (1998).

[30] C. Alard, Image subtraction using a space-varying kernel, A&A
144, 2 363–370 (2000).

[31] , H. Israel, H., F. V. Hessman, and S. Schuh, Optimising optimal
image subtraction, Astronomische Nachrichten 328, 16–24.

[32] N. Kaiser, Addition of Images with Varying Seeing, Pan-STARRS
Document Control, PSDC-002-011-xx (2004).

[33] B. Zackay, E. O. Ofek, and A. Gal-Yam, Proper image subtraction
– optimal transient detection, photometry and hypothesis test-
ing, ApJ, Submitted (2016).

https://docushare.lsstcorp.org/docushare/dsweb/Get/Document-8590
https://docushare.lsstcorp.org/docushare/dsweb/Get/Document-8590

	Preface
	Introduction
	LSST Data Management System
	Data Products
	Data Units
	Science Pipelines Organization

	Alert Production
	Single Frame Processing Pipeline (WBS 02C.03.01)
	Input Data: Raw
	Input Data Product: Reference
	Output Data Product: CalExp
	Output Data Product: Source
	Output Data Product: Metadata
	Actions in case of failure:
	Instrumental Signature Removal:
	Pipeline Tasks
	PSF and background determination:
	Pipeline Tasks
	Source measurement:
	Pipeline Tasks
	Photometric and Astrometric calibration:
	Pipeline Tasks

	Alert Detection (WBS 02C.03.04)
	Input Data: CalExp
	Input Data: Coadd
	Input Data Product: Object
	Input Data Product: DIAObjects
	Input Data Product: SSObjects
	Input Data Product: Reference
	Output Data Product: DIAImage
	Output Data Product: DIASource
	Output Data Product: DIAObject
	Output Data Product: DIAForcedPhotometry
	Template Generation
	Pipeline Tasks
	Image differencing
	Pipeline Tasks
	Source Association
	Pipeline Tasks

	Prototype Implementation

	Alert Generation Pipeline (WBS 02C.03.03)
	Key Requirements
	Input Data: Object
	Input Data: CalExp
	Input Data: TemplateCoadd
	Input Data Product: DIAImage
	Output Data Product: VOevents
	Alert generation
	Pipeline Tasks
	Alert Distribution: To community brokers
	Pipeline Tasks
	Alert Distribution: Minimal brokers
	Pipeline Tasks
	Forced Photometry on all DIAObjects
	Pipeline Tasks

	Prototype Implementation

	Precovery Photometry Pipeline
	Key Requirements
	Precovery of new DIAObjects

	Moving Object Pipeline (WBS 02C.03.06)
	Key Requirements
	Baseline Design
	Prototype Implementation

	Calibration Products Production
	Calibration Products Pipeline (WBS 02C.04.02)
	Key Requirements
	Baseline Design
	Instrumental sensitivity
	Atmospheric transmissivity
	Detector effects
	Ghost catalog

	Constituent Use Cases and Diagrams
	Prototype Implementation

	Photometric Calibration Pipeline (WBS 02C.03.07)
	Key Requirements
	Baseline Design
	Constituent Use Cases and Diagrams
	Prototype Implementation

	Astrometric Calibration Pipeline (WBS 02C.03.08)
	Key Requirements
	Baseline Design
	Constituent Use Cases and Diagrams
	Prototype Implementation

	Data Release Production
	Image Characterization and Calibration
	BootstrapImChar
	Input Data Product: Raw
	Input Data Product: Reference
	Output Data Product: Source
	Output Data Product: CalExp
	RunISR
	SubtractSnaps
	CombineSnaps
	FitWavefront
	SubtractBackground
	DetectSources
	DeblendSources
	MeasureSources
	MatchSemiBlind
	SelectStars
	FitWCS
	FitPSF
	WriteDiagnostics
	SubtractStars
	ReinsertStars
	MatchNonBlind
	FitApCorr
	ApplyApCorr

	StandardJointCal
	RefineImChar
	FinalImChar
	FinalJointCal

	Coaddition and Difference Imaging
	WarpAndPsfMatch
	BackgroundMatchAndReject
	WarpTemplates
	CoaddTemplates
	DiffIm
	UpdateMasks
	WarpRemaining
	CoaddRemaining

	Coadd Processing
	DeepDetect
	DeepAssociate
	DeepDeblend
	MeasureCoadds

	Overlap Resolution
	ResolvePatchOverlaps
	ResolveTractOverlaps

	Multi-Epoch Object Characterization
	MultiFit
	ForcedPhotometry

	Postprocessing
	MOPS
	ApplyCalibrations
	MakeSelectionMaps
	Classification
	GatherContributed

	Services for Data Quality Analysis (SDQA)
	Key Requirements
	Key Tasks for Each Tier of QA
	QA Tier 0
	Continuous Integration Services
	Test Execution Harness
	Verification Metrics Code
	Computational Metrics
	Curated Datasets
	SQUASH - Science Quality Analysis Harness

	QA Tier 1
	Alert QA
	Validation Metrics Performance
	Dome / Operator Displays
	Telescope Systems
	Camera Calibration
	Engineering and Commissioning
	Data Release Production

	QA Tier 2
	DRP-specific dataset
	Interfaces to Workflow and Provenance System(s)
	Output Interface to Science Pipelines
	Comparison tools for overlap areas due to satellite processing
	Metrics/products for science users to understand quality of science data products (depth mask/selection function, etc.)
	Characterization report for Data Release

	QA Tier 3
	Interactive Visualization
	Who validates the validator?
	Intrinsic design features
	Known Truth
	Reference Truth

	Science User Interface and Toolkit
	Science Pipeline Toolkit (WBS 02C.01.02.03)
	Key Requirements
	Baseline Design
	Constituent Use Cases and Diagrams
	Prototype Implementation

	Algorithmic Components
	Reference Catalog Construction: Princeton
	Instrument Signature Removal: UW
	AP: UW
	DRP: Princeton

	Artifact Detection
	Single-Exposure Morphology: UW
	Cosmic Ray Identification
	Optical ghosts

	Single-Exposure Aggregation: UW
	Linear feature detection and removal

	Snap Subtraction: UW
	Improvements by using multiple snaps

	Warped Image Comparison: Princeton?

	Artifact Interpolation: Princeton?
	Source Detection: Princeton
	Deblending
	Single Frame Deblending: Princeton
	Multi-Coadd Deblending: Princeton

	Measurement: Princeton
	Drivers: Princeton
	Single Frame Measurement:
	Multi-Coadd Measurement:
	Difference Image Measurement:
	Multi-Epoch Measurement:
	Forced Measurement:

	Algorithms: Princeton
	Centroids
	Pixel Flag Aggregation
	Second-Moment Shapes
	Aperture Photometry
	Static Point Source Photometry
	Kron Photometry
	Petrosian Photometry
	Galaxy Models
	Moving Point Source Models
	Trailed Point Source Models
	Dipole Models
	Spuriousness

	Blended Measurement: UW
	Deblend Template Projection
	Neighbor Noise Replacement
	Simultaneous Fitting
	Hybrid Models

	Background Estimation: UW?
	Matched Background Estimation: Princeton?
	Build Background Reference
	Patch Level: Princeton
	Tract Level: Princeton

	PSF Estimation – Not sure how to divide this up.
	Single CCD PSF Estimation: UW

	Wavefront Sensor PSF Estimation: UW
	Full Visit PSF Estimation: Princeton

	Aperture Correction: Princeton
	Astrometric Fitting
	Single CCD: UW
	Single Visit: UW
	Joint Multi-Visit: UW

	Photometric Fitting
	Single CCD (for AP): UW
	Single Visit: UW
	Joint Multi-Visit: UW?

	Retrieve Diffim Template for a Visit: UW
	PSF Matching
	Image Subtraction: UW
	PSF Homogenization for Coaddition: Princeton

	Image Warping
	Oversampled Images: UW
	Undersampled Images: UW?
	Irregularly-Sampled Images: UW?

	Image Coaddition: Princeton
	DCR-Corrected Template Generation: UW
	Refraction from the atmosphere
	Generating a DCR corrected template

	Image Decorrelation
	Difference Image Decorrelation: UW
	Coadd Decorrelation: Princeton

	Star/Galaxy Classification: Princeton?
	Single Frame S/G
	Multi-Source S/G
	Object Classification

	Variability Characterization: UW
	Characterization of periodic variability
	Characterization of aperiodic variability

	Proper Motion and Parallax from DIASources: UW
	Association and Matching
	Single CCD to Reference Catalog, Semi-Blind: UW
	Single Visit to Reference Catalog, Semi-Blind: UW
	Multiple Visits to Reference Catalog: Princeton
	DIAObject Generation: UW
	Object Generation: Princeton
	Blended Overlap Resolution: Princeton

	Raw Measurement Calibration: Princeton
	Ephemeris Calculation: UW
	Make Tracklets: UW
	Attribution and precovery: UW
	Orbit Fitting: UW
	Orbit Merging: UW

	Software Primitives
	Cartesian Geometry
	Points: UW
	Arrays of Points: UW
	Boxes: UW
	Polygons: UW
	Ellipses: Princeton

	Spherical Geometry
	Points: UW
	Arrays of Points: UW
	Boxes: UW
	Polygons: UW
	Ellipses: Princeton

	Images
	Simple Images: Princeton
	Masks: Princeton
	MaskedImages: Princeton
	Exposure: Princeton?

	Multi-Type Associative Containers: UW?
	Tables: Princeton
	Source
	Object
	Exposure
	AmpInfo: UW
	Reference
	Joins
	Queries
	N-Way Matching

	Footprints: Princeton
	PixelRegions
	Functors
	Peaks
	FootprintSets
	HeavyFootprints
	Thresholding

	Basic Statistics: Princeton
	Chromaticity Utilities: UW?
	Filters
	SEDs
	Color Terms

	PhotoCalib: Princeton?
	Convolution Kernels: Princeton
	Coordinate Transformations: UW
	Numerical Integration: Princeton
	Random Number Generation: Princeton
	Interpolation and Approximation of 2-D Fields: UW?
	Common Functions and Source Profiles: UW
	Camera Descriptions: UW
	Numerical Optimization: Princeton
	Monte Carlo Sampling: Princeton
	Point-Spread Functions: UW
	warping: Princeton
	Fourier Transforms: UW
	Tree Structures: UW
	Tools: Both

	Glossary

